Selesaikan untuk y
y = \frac{5 \sqrt{101} - 5}{2} \approx 22.624689053
y=\frac{-5\sqrt{101}-5}{2}\approx -27.624689053
Graf
Kongsi
Disalin ke papan klip
y^{2}+5y=625
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
y^{2}+5y-625=625-625
Tolak 625 daripada kedua-dua belah persamaan.
y^{2}+5y-625=0
Menolak 625 daripada dirinya sendiri menjadikannya 0.
y=\frac{-5±\sqrt{5^{2}-4\left(-625\right)}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, 5 dengan b dan -625 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\left(-625\right)}}{2}
Kuasa dua 5.
y=\frac{-5±\sqrt{25+2500}}{2}
Darabkan -4 kali -625.
y=\frac{-5±\sqrt{2525}}{2}
Tambahkan 25 pada 2500.
y=\frac{-5±5\sqrt{101}}{2}
Ambil punca kuasa dua 2525.
y=\frac{5\sqrt{101}-5}{2}
Sekarang selesaikan persamaan y=\frac{-5±5\sqrt{101}}{2} apabila ± ialah plus. Tambahkan -5 pada 5\sqrt{101}.
y=\frac{-5\sqrt{101}-5}{2}
Sekarang selesaikan persamaan y=\frac{-5±5\sqrt{101}}{2} apabila ± ialah minus. Tolak 5\sqrt{101} daripada -5.
y=\frac{5\sqrt{101}-5}{2} y=\frac{-5\sqrt{101}-5}{2}
Persamaan kini diselesaikan.
y^{2}+5y=625
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
y^{2}+5y+\left(\frac{5}{2}\right)^{2}=625+\left(\frac{5}{2}\right)^{2}
Bahagikan 5 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan \frac{5}{2}. Kemudian tambahkan kuasa dua \frac{5}{2} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
y^{2}+5y+\frac{25}{4}=625+\frac{25}{4}
Kuasa duakan \frac{5}{2} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
y^{2}+5y+\frac{25}{4}=\frac{2525}{4}
Tambahkan 625 pada \frac{25}{4}.
\left(y+\frac{5}{2}\right)^{2}=\frac{2525}{4}
Faktor y^{2}+5y+\frac{25}{4}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{5}{2}\right)^{2}}=\sqrt{\frac{2525}{4}}
Ambil punca kuasa dua kedua-dua belah persamaan.
y+\frac{5}{2}=\frac{5\sqrt{101}}{2} y+\frac{5}{2}=-\frac{5\sqrt{101}}{2}
Permudahkan.
y=\frac{5\sqrt{101}-5}{2} y=\frac{-5\sqrt{101}-5}{2}
Tolak \frac{5}{2} daripada kedua-dua belah persamaan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}