Langkau ke kandungan utama
Selesaikan untuk y, x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

y-\frac{1}{3}x=0
Pertimbangkan persamaan pertama. Tolak \frac{1}{3}x daripada kedua-dua belah.
y+5x=0
Pertimbangkan persamaan kedua. Tambahkan 5x pada kedua-dua belah.
y-\frac{1}{3}x=0,y+5x=0
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
y-\frac{1}{3}x=0
Pilih salah satu daripada persamaan dan selesaikannya untuk y dengan mengasingkan y di sebelah kiri tanda sama dengan.
y=\frac{1}{3}x
Tambahkan \frac{x}{3} pada kedua-dua belah persamaan.
\frac{1}{3}x+5x=0
Gantikan \frac{x}{3} dengan y dalam persamaan lain, y+5x=0.
\frac{16}{3}x=0
Tambahkan \frac{x}{3} pada 5x.
x=0
Bahagikan kedua-dua belah persamaan dengan \frac{16}{3} yang bersamaan dengan mendarab kedua-dua belah dengan salingan pecahan.
y=0
Gantikan 0 dengan x dalam y=\frac{1}{3}x. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk y.
y=0,x=0
Sistem kini diselesaikan.
y-\frac{1}{3}x=0
Pertimbangkan persamaan pertama. Tolak \frac{1}{3}x daripada kedua-dua belah.
y+5x=0
Pertimbangkan persamaan kedua. Tambahkan 5x pada kedua-dua belah.
y-\frac{1}{3}x=0,y+5x=0
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&5\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{5-\left(-\frac{1}{3}\right)}\\-\frac{1}{5-\left(-\frac{1}{3}\right)}&\frac{1}{5-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{15}{16}&\frac{1}{16}\\-\frac{3}{16}&\frac{3}{16}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Darabkan matriks tersebut.
y=0,x=0
Ekstrak unsur matriks y dan x.
y-\frac{1}{3}x=0
Pertimbangkan persamaan pertama. Tolak \frac{1}{3}x daripada kedua-dua belah.
y+5x=0
Pertimbangkan persamaan kedua. Tambahkan 5x pada kedua-dua belah.
y-\frac{1}{3}x=0,y+5x=0
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
y-y-\frac{1}{3}x-5x=0
Tolak y+5x=0 daripada y-\frac{1}{3}x=0 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
-\frac{1}{3}x-5x=0
Tambahkan y pada -y. Seubtan y dan -y saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
-\frac{16}{3}x=0
Tambahkan -\frac{x}{3} pada -5x.
x=0
Bahagikan kedua-dua belah persamaan dengan -\frac{16}{3} yang bersamaan dengan mendarab kedua-dua belah dengan salingan pecahan.
y=0
Gantikan 0 dengan x dalam y+5x=0. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk y.
y=0,x=0
Sistem kini diselesaikan.