Langkau ke kandungan utama
Faktor
Tick mark Image
Nilaikan
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

\left(x-10\right)\left(x^{2}-5x+6\right)
Dengan Teorem Punca Nisbah, semua punca nisbah polinomial adalah dalam bentuk \frac{p}{q}, apabila p membahagikan sebutan malar -60 dan q membahagikan pekali pelopor 1. Salah satu punca adalah 10. Faktorkan polinomial dengan membahagikannya dengan x-10.
a+b=-5 ab=1\times 6=6
Pertimbangkan x^{2}-5x+6. Faktorkan ungkapan mengikut perkumpulan. Pertama sekali, ungkapan perlu ditulis semula sebagai x^{2}+ax+bx+6. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
-1,-6 -2,-3
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah negatif, a dan b kedua-duanya negatif. Senaraikan semua pasangan integer yang memberikan hasil 6.
-1-6=-7 -2-3=-5
Kira jumlah untuk setiap pasangan.
a=-3 b=-2
Penyelesaian ialah pasangan yang memberikan jumlah -5.
\left(x^{2}-3x\right)+\left(-2x+6\right)
Tulis semula x^{2}-5x+6 sebagai \left(x^{2}-3x\right)+\left(-2x+6\right).
x\left(x-3\right)-2\left(x-3\right)
Faktorkan x dalam kumpulan pertama dan -2 dalam kumpulan kedua.
\left(x-3\right)\left(x-2\right)
Faktorkan sebutan lazim x-3 dengan menggunakan sifat kalis agihan.
\left(x-10\right)\left(x-3\right)\left(x-2\right)
Tulis semula ungkapan difaktorkan yang lengkap.