Langkau ke kandungan utama
Selesaikan untuk x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

x^{2}-6x+9=0
Tambahkan 9 pada kedua-dua belah.
a+b=-6 ab=9
Untuk menyelesaikan persamaan, faktorkan x^{2}-6x+9 menggunakan formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
-1,-9 -3,-3
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah negatif, a dan b kedua-duanya negatif. Senaraikan semua pasangan integer yang memberikan hasil 9.
-1-9=-10 -3-3=-6
Kira jumlah untuk setiap pasangan.
a=-3 b=-3
Penyelesaian ialah pasangan yang memberikan jumlah -6.
\left(x-3\right)\left(x-3\right)
Tulis semula ungkapan \left(x+a\right)\left(x+b\right) yang difaktorkan dengan menggunakan nilai yang diperolehi.
\left(x-3\right)^{2}
Tuliskan semula sebagai kuasa dua binomial.
x=3
Untuk mencari penyelesaian persamaan, selesaikan x-3=0.
x^{2}-6x+9=0
Tambahkan 9 pada kedua-dua belah.
a+b=-6 ab=1\times 9=9
Untuk menyelesaikan persamaan, faktorkan sebelah kiri mengikut perkumpulan. Pertama sekali, sebelah kiri perlu ditulis semula sebagai x^{2}+ax+bx+9. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
-1,-9 -3,-3
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah negatif, a dan b kedua-duanya negatif. Senaraikan semua pasangan integer yang memberikan hasil 9.
-1-9=-10 -3-3=-6
Kira jumlah untuk setiap pasangan.
a=-3 b=-3
Penyelesaian ialah pasangan yang memberikan jumlah -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Tulis semula x^{2}-6x+9 sebagai \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Faktorkan x dalam kumpulan pertama dan -3 dalam kumpulan kedua.
\left(x-3\right)\left(x-3\right)
Faktorkan sebutan lazim x-3 dengan menggunakan sifat kalis agihan.
\left(x-3\right)^{2}
Tuliskan semula sebagai kuasa dua binomial.
x=3
Untuk mencari penyelesaian persamaan, selesaikan x-3=0.
x^{2}-6x=-9
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x^{2}-6x-\left(-9\right)=-9-\left(-9\right)
Tambahkan 9 pada kedua-dua belah persamaan.
x^{2}-6x-\left(-9\right)=0
Menolak -9 daripada dirinya sendiri menjadikannya 0.
x^{2}-6x+9=0
Tolak -9 daripada 0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, -6 dengan b dan 9 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9}}{2}
Kuasa dua -6.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2}
Darabkan -4 kali 9.
x=\frac{-\left(-6\right)±\sqrt{0}}{2}
Tambahkan 36 pada -36.
x=-\frac{-6}{2}
Ambil punca kuasa dua 0.
x=\frac{6}{2}
Nombor bertentangan -6 ialah 6.
x=3
Bahagikan 6 dengan 2.
x^{2}-6x=-9
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Bahagikan -6 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan -3. Kemudian tambahkan kuasa dua -3 pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}-6x+9=-9+9
Kuasa dua -3.
x^{2}-6x+9=0
Tambahkan -9 pada 9.
\left(x-3\right)^{2}=0
Faktor x^{2}-6x+9. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-3=0 x-3=0
Permudahkan.
x=3 x=3
Tambahkan 3 pada kedua-dua belah persamaan.
x=3
Persamaan kini diselesaikan. Penyelesaian adalah sama.