Selesaikan untuk x
x = \frac{\sqrt{37} + 13}{2} \approx 9.541381265
x = \frac{13 - \sqrt{37}}{2} \approx 3.458618735
Graf
Kongsi
Disalin ke papan klip
x^{2}-13x+33=0
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 33}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, -13 dengan b dan 33 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 33}}{2}
Kuasa dua -13.
x=\frac{-\left(-13\right)±\sqrt{169-132}}{2}
Darabkan -4 kali 33.
x=\frac{-\left(-13\right)±\sqrt{37}}{2}
Tambahkan 169 pada -132.
x=\frac{13±\sqrt{37}}{2}
Nombor bertentangan -13 ialah 13.
x=\frac{\sqrt{37}+13}{2}
Sekarang selesaikan persamaan x=\frac{13±\sqrt{37}}{2} apabila ± ialah plus. Tambahkan 13 pada \sqrt{37}.
x=\frac{13-\sqrt{37}}{2}
Sekarang selesaikan persamaan x=\frac{13±\sqrt{37}}{2} apabila ± ialah minus. Tolak \sqrt{37} daripada 13.
x=\frac{\sqrt{37}+13}{2} x=\frac{13-\sqrt{37}}{2}
Persamaan kini diselesaikan.
x^{2}-13x+33=0
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
x^{2}-13x+33-33=-33
Tolak 33 daripada kedua-dua belah persamaan.
x^{2}-13x=-33
Menolak 33 daripada dirinya sendiri menjadikannya 0.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-33+\left(-\frac{13}{2}\right)^{2}
Bahagikan -13 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan -\frac{13}{2}. Kemudian tambahkan kuasa dua -\frac{13}{2} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}-13x+\frac{169}{4}=-33+\frac{169}{4}
Kuasa duakan -\frac{13}{2} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
x^{2}-13x+\frac{169}{4}=\frac{37}{4}
Tambahkan -33 pada \frac{169}{4}.
\left(x-\frac{13}{2}\right)^{2}=\frac{37}{4}
Faktor x^{2}-13x+\frac{169}{4}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{37}{4}}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-\frac{13}{2}=\frac{\sqrt{37}}{2} x-\frac{13}{2}=-\frac{\sqrt{37}}{2}
Permudahkan.
x=\frac{\sqrt{37}+13}{2} x=\frac{13-\sqrt{37}}{2}
Tambahkan \frac{13}{2} pada kedua-dua belah persamaan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}