Selesaikan untuk x
x=\sqrt{7}-2.5\approx 0.145751311
x=-\sqrt{7}-2.5\approx -5.145751311
Graf
Kongsi
Disalin ke papan klip
x^{2}+5x-0.75=0
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-5±\sqrt{5^{2}-4\left(-0.75\right)}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, 5 dengan b dan -0.75 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-0.75\right)}}{2}
Kuasa dua 5.
x=\frac{-5±\sqrt{25+3}}{2}
Darabkan -4 kali -0.75.
x=\frac{-5±\sqrt{28}}{2}
Tambahkan 25 pada 3.
x=\frac{-5±2\sqrt{7}}{2}
Ambil punca kuasa dua 28.
x=\frac{2\sqrt{7}-5}{2}
Sekarang selesaikan persamaan x=\frac{-5±2\sqrt{7}}{2} apabila ± ialah plus. Tambahkan -5 pada 2\sqrt{7}.
x=\sqrt{7}-\frac{5}{2}
Bahagikan -5+2\sqrt{7} dengan 2.
x=\frac{-2\sqrt{7}-5}{2}
Sekarang selesaikan persamaan x=\frac{-5±2\sqrt{7}}{2} apabila ± ialah minus. Tolak 2\sqrt{7} daripada -5.
x=-\sqrt{7}-\frac{5}{2}
Bahagikan -5-2\sqrt{7} dengan 2.
x=\sqrt{7}-\frac{5}{2} x=-\sqrt{7}-\frac{5}{2}
Persamaan kini diselesaikan.
x^{2}+5x-0.75=0
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
x^{2}+5x-0.75-\left(-0.75\right)=-\left(-0.75\right)
Tambahkan 0.75 pada kedua-dua belah persamaan.
x^{2}+5x=-\left(-0.75\right)
Menolak -0.75 daripada dirinya sendiri menjadikannya 0.
x^{2}+5x=0.75
Tolak -0.75 daripada 0.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=0.75+\left(\frac{5}{2}\right)^{2}
Bahagikan 5 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan \frac{5}{2}. Kemudian tambahkan kuasa dua \frac{5}{2} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}+5x+\frac{25}{4}=\frac{3+25}{4}
Kuasa duakan \frac{5}{2} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
x^{2}+5x+\frac{25}{4}=7
Tambahkan 0.75 pada \frac{25}{4} dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
\left(x+\frac{5}{2}\right)^{2}=7
Faktor x^{2}+5x+\frac{25}{4}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{7}
Ambil punca kuasa dua kedua-dua belah persamaan.
x+\frac{5}{2}=\sqrt{7} x+\frac{5}{2}=-\sqrt{7}
Permudahkan.
x=\sqrt{7}-\frac{5}{2} x=-\sqrt{7}-\frac{5}{2}
Tolak \frac{5}{2} daripada kedua-dua belah persamaan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}