Langkau ke kandungan utama
Selesaikan untuk x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

x^{2}+3x+21=22
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x^{2}+3x+21-22=22-22
Tolak 22 daripada kedua-dua belah persamaan.
x^{2}+3x+21-22=0
Menolak 22 daripada dirinya sendiri menjadikannya 0.
x^{2}+3x-1=0
Tolak 22 daripada 21.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, 3 dengan b dan -1 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)}}{2}
Kuasa dua 3.
x=\frac{-3±\sqrt{9+4}}{2}
Darabkan -4 kali -1.
x=\frac{-3±\sqrt{13}}{2}
Tambahkan 9 pada 4.
x=\frac{\sqrt{13}-3}{2}
Sekarang selesaikan persamaan x=\frac{-3±\sqrt{13}}{2} apabila ± ialah plus. Tambahkan -3 pada \sqrt{13}.
x=\frac{-\sqrt{13}-3}{2}
Sekarang selesaikan persamaan x=\frac{-3±\sqrt{13}}{2} apabila ± ialah minus. Tolak \sqrt{13} daripada -3.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
Persamaan kini diselesaikan.
x^{2}+3x+21=22
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
x^{2}+3x+21-21=22-21
Tolak 21 daripada kedua-dua belah persamaan.
x^{2}+3x=22-21
Menolak 21 daripada dirinya sendiri menjadikannya 0.
x^{2}+3x=1
Tolak 21 daripada 22.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=1+\left(\frac{3}{2}\right)^{2}
Bahagikan 3 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan \frac{3}{2}. Kemudian tambahkan kuasa dua \frac{3}{2} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}+3x+\frac{9}{4}=1+\frac{9}{4}
Kuasa duakan \frac{3}{2} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
x^{2}+3x+\frac{9}{4}=\frac{13}{4}
Tambahkan 1 pada \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{13}{4}
Faktor x^{2}+3x+\frac{9}{4}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Ambil punca kuasa dua kedua-dua belah persamaan.
x+\frac{3}{2}=\frac{\sqrt{13}}{2} x+\frac{3}{2}=-\frac{\sqrt{13}}{2}
Permudahkan.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
Tolak \frac{3}{2} daripada kedua-dua belah persamaan.