Langkau ke kandungan utama
Faktor
Tick mark Image
Nilaikan
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

x^{2}+2x-4=0
Polinomial kuadratik boleh difaktorkan dengan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), apabila x_{1} dan x_{2} merupakan penyelesaian persamaan kuadratik ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2}
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2}
Kuasa dua 2.
x=\frac{-2±\sqrt{4+16}}{2}
Darabkan -4 kali -4.
x=\frac{-2±\sqrt{20}}{2}
Tambahkan 4 pada 16.
x=\frac{-2±2\sqrt{5}}{2}
Ambil punca kuasa dua 20.
x=\frac{2\sqrt{5}-2}{2}
Sekarang selesaikan persamaan x=\frac{-2±2\sqrt{5}}{2} apabila ± ialah plus. Tambahkan -2 pada 2\sqrt{5}.
x=\sqrt{5}-1
Bahagikan -2+2\sqrt{5} dengan 2.
x=\frac{-2\sqrt{5}-2}{2}
Sekarang selesaikan persamaan x=\frac{-2±2\sqrt{5}}{2} apabila ± ialah minus. Tolak 2\sqrt{5} daripada -2.
x=-\sqrt{5}-1
Bahagikan -2-2\sqrt{5} dengan 2.
x^{2}+2x-4=\left(x-\left(\sqrt{5}-1\right)\right)\left(x-\left(-\sqrt{5}-1\right)\right)
Faktorkan ungkapan asal menggunakan ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Gantikan -1+\sqrt{5} dengan x_{1} dan -1-\sqrt{5} dengan x_{2}.