Selesaikan untuk f
f=-\frac{x}{-2x^{2}+5x-1}
x\neq 0\text{ and }x\neq \frac{\sqrt{17}+5}{4}\text{ and }x\neq \frac{5-\sqrt{17}}{4}
Selesaikan untuk x (complex solution)
x=-\frac{\sqrt{17f^{2}+10f+1}-5f-1}{4f}
x=\frac{\sqrt{17f^{2}+10f+1}+5f+1}{4f}\text{, }f\neq 0
Selesaikan untuk x
x=-\frac{\sqrt{17f^{2}+10f+1}-5f-1}{4f}
x=\frac{\sqrt{17f^{2}+10f+1}+5f+1}{4f}\text{, }f\leq \frac{-2\sqrt{2}-5}{17}\text{ or }\left(f\neq 0\text{ and }f\geq \frac{2\sqrt{2}-5}{17}\right)
Graf
Kongsi
Disalin ke papan klip
\frac{1}{f}x=2x^{2}-5x+1
Susun semula sebutan.
1x=2x^{2}f-5xf+f
Pemboleh ubah f tidak boleh sama dengan 0 kerana pembahagian dengan sifar tidak ditakrifkan. Darabkan kedua-dua belah persamaan dengan f.
2x^{2}f-5xf+f=1x
Tukar bahagian supaya semua sebutan pemboleh ubah berada di sebelah kiri.
2fx^{2}-5fx+f=x
Susun semula sebutan.
\left(2x^{2}-5x+1\right)f=x
Gabungkan semua sebutan yang mengandungi f.
\frac{\left(2x^{2}-5x+1\right)f}{2x^{2}-5x+1}=\frac{x}{2x^{2}-5x+1}
Bahagikan kedua-dua belah dengan 2x^{2}-5x+1.
f=\frac{x}{2x^{2}-5x+1}
Membahagi dengan 2x^{2}-5x+1 membuat asal pendaraban dengan 2x^{2}-5x+1.
f=\frac{x}{2x^{2}-5x+1}\text{, }f\neq 0
Pemboleh ubah f tidak boleh sama dengan 0.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}