Langkau ke kandungan utama
Selesaikan untuk A (complex solution)
Tick mark Image
Selesaikan untuk B (complex solution)
Tick mark Image
Selesaikan untuk A
Tick mark Image
Selesaikan untuk B
Tick mark Image

Masalah Sama dari Carian Web

Kongsi

AB+CD-ADBC=0
Tolak ADBC daripada kedua-dua belah.
AB-ADBC=-CD
Tolak CD daripada kedua-dua belah. Apa-apa sahaja yang ditolak daripada sifar menjadikannya negatif.
\left(B-DBC\right)A=-CD
Gabungkan semua sebutan yang mengandungi A.
\left(B-BCD\right)A=-CD
Persamaan tersebut adalah dalam bentuk piawai.
\frac{\left(B-BCD\right)A}{B-BCD}=-\frac{CD}{B-BCD}
Bahagikan kedua-dua belah dengan -BCD+B.
A=-\frac{CD}{B-BCD}
Membahagi dengan -BCD+B membuat asal pendaraban dengan -BCD+B.
A=-\frac{CD}{B\left(1-CD\right)}
Bahagikan -CD dengan -BCD+B.
AB+CD-ADBC=0
Tolak ADBC daripada kedua-dua belah.
AB-ADBC=-CD
Tolak CD daripada kedua-dua belah. Apa-apa sahaja yang ditolak daripada sifar menjadikannya negatif.
\left(A-ADC\right)B=-CD
Gabungkan semua sebutan yang mengandungi B.
\left(A-ACD\right)B=-CD
Persamaan tersebut adalah dalam bentuk piawai.
\frac{\left(A-ACD\right)B}{A-ACD}=-\frac{CD}{A-ACD}
Bahagikan kedua-dua belah dengan A-ADC.
B=-\frac{CD}{A-ACD}
Membahagi dengan A-ADC membuat asal pendaraban dengan A-ADC.
B=-\frac{CD}{A\left(1-CD\right)}
Bahagikan -CD dengan A-ADC.
AB+CD-ADBC=0
Tolak ADBC daripada kedua-dua belah.
AB-ADBC=-CD
Tolak CD daripada kedua-dua belah. Apa-apa sahaja yang ditolak daripada sifar menjadikannya negatif.
\left(B-DBC\right)A=-CD
Gabungkan semua sebutan yang mengandungi A.
\left(B-BCD\right)A=-CD
Persamaan tersebut adalah dalam bentuk piawai.
\frac{\left(B-BCD\right)A}{B-BCD}=-\frac{CD}{B-BCD}
Bahagikan kedua-dua belah dengan -BCD+B.
A=-\frac{CD}{B-BCD}
Membahagi dengan -BCD+B membuat asal pendaraban dengan -BCD+B.
A=-\frac{CD}{B\left(1-CD\right)}
Bahagikan -CD dengan -BCD+B.
AB+CD-ADBC=0
Tolak ADBC daripada kedua-dua belah.
AB-ADBC=-CD
Tolak CD daripada kedua-dua belah. Apa-apa sahaja yang ditolak daripada sifar menjadikannya negatif.
\left(A-ADC\right)B=-CD
Gabungkan semua sebutan yang mengandungi B.
\left(A-ACD\right)B=-CD
Persamaan tersebut adalah dalam bentuk piawai.
\frac{\left(A-ACD\right)B}{A-ACD}=-\frac{CD}{A-ACD}
Bahagikan kedua-dua belah dengan A-ADC.
B=-\frac{CD}{A-ACD}
Membahagi dengan A-ADC membuat asal pendaraban dengan A-ADC.
B=-\frac{CD}{A\left(1-CD\right)}
Bahagikan -CD dengan A-ADC.