Langkau ke kandungan utama
Faktor
Tick mark Image
Nilaikan
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

x^{2}+6x+9
Susun semula polinomial untuk meletakkannya dalam bentuk piawai. Letakkan terma mengikut tertib daripada kuasa tertinggi hingga terendah.
a+b=6 ab=1\times 9=9
Faktorkan ungkapan mengikut perkumpulan. Pertama sekali, ungkapan perlu ditulis semula sebagai x^{2}+ax+bx+9. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
1,9 3,3
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah positif, a dan b kedua-duanya positif. Senaraikan semua pasangan integer yang memberikan hasil 9.
1+9=10 3+3=6
Kira jumlah untuk setiap pasangan.
a=3 b=3
Penyelesaian ialah pasangan yang memberikan jumlah 6.
\left(x^{2}+3x\right)+\left(3x+9\right)
Tulis semula x^{2}+6x+9 sebagai \left(x^{2}+3x\right)+\left(3x+9\right).
x\left(x+3\right)+3\left(x+3\right)
Faktorkan x dalam kumpulan pertama dan 3 dalam kumpulan kedua.
\left(x+3\right)\left(x+3\right)
Faktorkan sebutan lazim x+3 dengan menggunakan sifat kalis agihan.
\left(x+3\right)^{2}
Tuliskan semula sebagai kuasa dua binomial.
factor(x^{2}+6x+9)
Trinomial ini mempunyai bentuk kuasa dua trinomial, mungkin didarabkan dengan faktor sepunya. Kuasa dua trinomial boleh difaktorkan dengan mencari punca kuasa dua sebutan pendahulu dan sebutan pengekor.
\sqrt{9}=3
Cari punca kuasa dua sebutan pengekor, 9.
\left(x+3\right)^{2}
Kuasa dua trinomial ialah kuasa dua binomial iaitu hasil tambah atau beza punca kuasa dua sebutan pendahulu dan pengekor dengan tanda yang ditentukan oleh tanda sebutan tengah kuasa dua trinomial.
x^{2}+6x+9=0
Polinomial kuadratik boleh difaktorkan dengan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), apabila x_{1} dan x_{2} merupakan penyelesaian persamaan kuadratik ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\times 9}}{2}
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-6±\sqrt{36-4\times 9}}{2}
Kuasa dua 6.
x=\frac{-6±\sqrt{36-36}}{2}
Darabkan -4 kali 9.
x=\frac{-6±\sqrt{0}}{2}
Tambahkan 36 pada -36.
x=\frac{-6±0}{2}
Ambil punca kuasa dua 0.
x^{2}+6x+9=\left(x-\left(-3\right)\right)\left(x-\left(-3\right)\right)
Faktorkan ungkapan asal menggunakan ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Gantikan -3 dengan x_{1} dan -3 dengan x_{2}.
x^{2}+6x+9=\left(x+3\right)\left(x+3\right)
Permudahkan semua ungkapan dalam bentuk p-\left(-q\right) kepada p+q.