Selesaikan untuk x
x = \frac{\sqrt{73} + 5}{2} \approx 6.772001873
x=\frac{5-\sqrt{73}}{2}\approx -1.772001873
Graf
Kongsi
Disalin ke papan klip
5x+12-x^{2}=0
Tolak x^{2} daripada kedua-dua belah.
-x^{2}+5x+12=0
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan -1 dengan a, 5 dengan b dan 12 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\times 12}}{2\left(-1\right)}
Kuasa dua 5.
x=\frac{-5±\sqrt{25+4\times 12}}{2\left(-1\right)}
Darabkan -4 kali -1.
x=\frac{-5±\sqrt{25+48}}{2\left(-1\right)}
Darabkan 4 kali 12.
x=\frac{-5±\sqrt{73}}{2\left(-1\right)}
Tambahkan 25 pada 48.
x=\frac{-5±\sqrt{73}}{-2}
Darabkan 2 kali -1.
x=\frac{\sqrt{73}-5}{-2}
Sekarang selesaikan persamaan x=\frac{-5±\sqrt{73}}{-2} apabila ± ialah plus. Tambahkan -5 pada \sqrt{73}.
x=\frac{5-\sqrt{73}}{2}
Bahagikan -5+\sqrt{73} dengan -2.
x=\frac{-\sqrt{73}-5}{-2}
Sekarang selesaikan persamaan x=\frac{-5±\sqrt{73}}{-2} apabila ± ialah minus. Tolak \sqrt{73} daripada -5.
x=\frac{\sqrt{73}+5}{2}
Bahagikan -5-\sqrt{73} dengan -2.
x=\frac{5-\sqrt{73}}{2} x=\frac{\sqrt{73}+5}{2}
Persamaan kini diselesaikan.
5x+12-x^{2}=0
Tolak x^{2} daripada kedua-dua belah.
5x-x^{2}=-12
Tolak 12 daripada kedua-dua belah. Apa-apa sahaja yang ditolak daripada sifar menjadikannya negatif.
-x^{2}+5x=-12
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
\frac{-x^{2}+5x}{-1}=-\frac{12}{-1}
Bahagikan kedua-dua belah dengan -1.
x^{2}+\frac{5}{-1}x=-\frac{12}{-1}
Membahagi dengan -1 membuat asal pendaraban dengan -1.
x^{2}-5x=-\frac{12}{-1}
Bahagikan 5 dengan -1.
x^{2}-5x=12
Bahagikan -12 dengan -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=12+\left(-\frac{5}{2}\right)^{2}
Bahagikan -5 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan -\frac{5}{2}. Kemudian tambahkan kuasa dua -\frac{5}{2} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}-5x+\frac{25}{4}=12+\frac{25}{4}
Kuasa duakan -\frac{5}{2} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
x^{2}-5x+\frac{25}{4}=\frac{73}{4}
Tambahkan 12 pada \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{73}{4}
Faktor x^{2}-5x+\frac{25}{4}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{73}{4}}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-\frac{5}{2}=\frac{\sqrt{73}}{2} x-\frac{5}{2}=-\frac{\sqrt{73}}{2}
Permudahkan.
x=\frac{\sqrt{73}+5}{2} x=\frac{5-\sqrt{73}}{2}
Tambahkan \frac{5}{2} pada kedua-dua belah persamaan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}