Selesaikan untuk x (complex solution)
x=\frac{5}{2}+\left(-\frac{1}{2}i\right)\left(-25+\left(-4\right)ArcTanI(\frac{1}{24}\times 2^{\frac{1}{2}})+\left(-8\right)\pi n_{1}\right)^{\frac{1}{2}}\text{, }n_{1}\in \mathrm{Z}
x=\frac{5}{2}+\frac{1}{2}i\left(-25+\left(-4\right)ArcTanI(\frac{1}{24}\times 2^{\frac{1}{2}})+\left(-8\right)\pi n_{1}\right)^{\frac{1}{2}}\text{, }n_{1}\in \mathrm{Z}
x=\frac{5}{2}+\left(-\frac{1}{2}i\right)\left(-25+\left(-8\right)\pi n_{5}+4i\ln(\frac{1}{17}i+\left(-\frac{12}{17}\right)\times 2^{\frac{1}{2}})\right)^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}
x=\frac{5}{2}+\frac{1}{2}i\left(-25+\left(-8\right)\pi n_{5}+4i\ln(\frac{1}{17}i+\left(-\frac{12}{17}\right)\times 2^{\frac{1}{2}})\right)^{\frac{1}{2}}\text{, }n_{5}\in \mathrm{Z}
Selesaikan untuk x
x=\frac{-\sqrt{8\pi n_{2}+4\pi +25-4\arcsin(\frac{1}{17})}+5}{2}\text{, }n_{2}\in \mathrm{Z}\text{, }n_{2}\geq -1
x=\frac{\sqrt{8\pi n_{2}+4\pi +25-4\arcsin(\frac{1}{17})}+5}{2}\text{, }n_{2}\in \mathrm{Z}\text{, }n_{2}\geq -1
x=\frac{-\sqrt{8\pi n_{1}+4\arcsin(\frac{1}{17})+25}+5}{2}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\geq -1
x=\frac{\sqrt{8\pi n_{1}+4\arcsin(\frac{1}{17})+25}+5}{2}\text{, }n_{1}\in \mathrm{Z}\text{, }n_{1}\geq -1
Graf
Kongsi
Disalin ke papan klip
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}