Selesaikan untuk x
x=-\frac{2A^{4}-81}{3\left(A^{2}+9\right)}
Selesaikan untuk A
A=-\frac{\sqrt{3\left(\sqrt{x^{2}-24x+72}-x\right)}}{2}
A=\frac{\sqrt{3\left(\sqrt{x^{2}-24x+72}-x\right)}}{2}\text{, }x\leq 3
Graf
Kuiz
Algebra
5 masalah yang serupa dengan:
3 x + \frac { A ^ { 4 } } { 9 + A ^ { 2 } } = 9 - A ^ { 2 }
Kongsi
Disalin ke papan klip
3x\left(A^{2}+9\right)+A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
Darabkan kedua-dua belah persamaan dengan A^{2}+9.
3xA^{2}+27x+A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
Gunakan sifat kalis agihan untuk mendarab 3x dengan A^{2}+9.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{2}\left(A^{2}+9\right)
Gunakan sifat kalis agihan untuk mendarab A^{2}+9 dengan 9.
3xA^{2}+27x+A^{4}=9A^{2}+81-A^{4}-9A^{2}
Gunakan sifat kalis agihan untuk mendarab -A^{2} dengan A^{2}+9.
3xA^{2}+27x+A^{4}=81-A^{4}
Gabungkan 9A^{2} dan -9A^{2} untuk mendapatkan 0.
3xA^{2}+27x=81-A^{4}-A^{4}
Tolak A^{4} daripada kedua-dua belah.
3xA^{2}+27x=81-2A^{4}
Gabungkan -A^{4} dan -A^{4} untuk mendapatkan -2A^{4}.
\left(3A^{2}+27\right)x=81-2A^{4}
Gabungkan semua sebutan yang mengandungi x.
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81-2A^{4}}{3A^{2}+27}
Bahagikan kedua-dua belah dengan 3A^{2}+27.
x=\frac{81-2A^{4}}{3A^{2}+27}
Membahagi dengan 3A^{2}+27 membuat asal pendaraban dengan 3A^{2}+27.
x=\frac{81-2A^{4}}{3\left(A^{2}+9\right)}
Bahagikan 81-2A^{4} dengan 3A^{2}+27.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}