Langkau ke kandungan utama
Faktor
Tick mark Image
Nilaikan
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

a+b=17 ab=3\times 10=30
Faktorkan ungkapan mengikut perkumpulan. Pertama sekali, ungkapan perlu ditulis semula sebagai 3x^{2}+ax+bx+10. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
1,30 2,15 3,10 5,6
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah positif, a dan b kedua-duanya positif. Senaraikan semua pasangan integer yang memberikan hasil 30.
1+30=31 2+15=17 3+10=13 5+6=11
Kira jumlah untuk setiap pasangan.
a=2 b=15
Penyelesaian ialah pasangan yang memberikan jumlah 17.
\left(3x^{2}+2x\right)+\left(15x+10\right)
Tulis semula 3x^{2}+17x+10 sebagai \left(3x^{2}+2x\right)+\left(15x+10\right).
x\left(3x+2\right)+5\left(3x+2\right)
Faktorkan x dalam kumpulan pertama dan 5 dalam kumpulan kedua.
\left(3x+2\right)\left(x+5\right)
Faktorkan sebutan lazim 3x+2 dengan menggunakan sifat kalis agihan.
3x^{2}+17x+10=0
Polinomial kuadratik boleh difaktorkan dengan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), apabila x_{1} dan x_{2} merupakan penyelesaian persamaan kuadratik ax^{2}+bx+c=0.
x=\frac{-17±\sqrt{17^{2}-4\times 3\times 10}}{2\times 3}
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-17±\sqrt{289-4\times 3\times 10}}{2\times 3}
Kuasa dua 17.
x=\frac{-17±\sqrt{289-12\times 10}}{2\times 3}
Darabkan -4 kali 3.
x=\frac{-17±\sqrt{289-120}}{2\times 3}
Darabkan -12 kali 10.
x=\frac{-17±\sqrt{169}}{2\times 3}
Tambahkan 289 pada -120.
x=\frac{-17±13}{2\times 3}
Ambil punca kuasa dua 169.
x=\frac{-17±13}{6}
Darabkan 2 kali 3.
x=-\frac{4}{6}
Sekarang selesaikan persamaan x=\frac{-17±13}{6} apabila ± ialah plus. Tambahkan -17 pada 13.
x=-\frac{2}{3}
Kurangkan pecahan \frac{-4}{6} kepada sebutan terendah dengan mengeluarkan dan membatalkan 2.
x=-\frac{30}{6}
Sekarang selesaikan persamaan x=\frac{-17±13}{6} apabila ± ialah minus. Tolak 13 daripada -17.
x=-5
Bahagikan -30 dengan 6.
3x^{2}+17x+10=3\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-5\right)\right)
Faktorkan ungkapan asal menggunakan ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Gantikan -\frac{2}{3} dengan x_{1} dan -5 dengan x_{2}.
3x^{2}+17x+10=3\left(x+\frac{2}{3}\right)\left(x+5\right)
Permudahkan semua ungkapan dalam bentuk p-\left(-q\right) kepada p+q.
3x^{2}+17x+10=3\times \frac{3x+2}{3}\left(x+5\right)
Tambahkan \frac{2}{3} pada x dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
3x^{2}+17x+10=\left(3x+2\right)\left(x+5\right)
Batalkan faktor sepunya terbesar 3 dalam 3 dan 3.