Faktor
10\left(x-2\right)\left(2x+1\right)
Nilaikan
10\left(x-2\right)\left(2x+1\right)
Graf
Kongsi
Disalin ke papan klip
10\left(2x^{2}-3x-2\right)
Faktorkan 10.
a+b=-3 ab=2\left(-2\right)=-4
Pertimbangkan 2x^{2}-3x-2. Faktorkan ungkapan mengikut perkumpulan. Pertama sekali, ungkapan perlu ditulis semula sebagai 2x^{2}+ax+bx-2. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
1,-4 2,-2
Oleh kerana ab adalah negatif, a dan b mempunyai tanda yang bertentangan. Oleh kerana a+b adalah negatif, nombor negatif mempunyai nilai mutlak yang lebih besar daripada positif. Senaraikan semua pasangan integer yang memberikan hasil -4.
1-4=-3 2-2=0
Kira jumlah untuk setiap pasangan.
a=-4 b=1
Penyelesaian ialah pasangan yang memberikan jumlah -3.
\left(2x^{2}-4x\right)+\left(x-2\right)
Tulis semula 2x^{2}-3x-2 sebagai \left(2x^{2}-4x\right)+\left(x-2\right).
2x\left(x-2\right)+x-2
Faktorkan 2x dalam 2x^{2}-4x.
\left(x-2\right)\left(2x+1\right)
Faktorkan sebutan lazim x-2 dengan menggunakan sifat kalis agihan.
10\left(x-2\right)\left(2x+1\right)
Tulis semula ungkapan difaktorkan yang lengkap.
20x^{2}-30x-20=0
Polinomial kuadratik boleh difaktorkan dengan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), apabila x_{1} dan x_{2} merupakan penyelesaian persamaan kuadratik ax^{2}+bx+c=0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 20\left(-20\right)}}{2\times 20}
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 20\left(-20\right)}}{2\times 20}
Kuasa dua -30.
x=\frac{-\left(-30\right)±\sqrt{900-80\left(-20\right)}}{2\times 20}
Darabkan -4 kali 20.
x=\frac{-\left(-30\right)±\sqrt{900+1600}}{2\times 20}
Darabkan -80 kali -20.
x=\frac{-\left(-30\right)±\sqrt{2500}}{2\times 20}
Tambahkan 900 pada 1600.
x=\frac{-\left(-30\right)±50}{2\times 20}
Ambil punca kuasa dua 2500.
x=\frac{30±50}{2\times 20}
Nombor bertentangan -30 ialah 30.
x=\frac{30±50}{40}
Darabkan 2 kali 20.
x=\frac{80}{40}
Sekarang selesaikan persamaan x=\frac{30±50}{40} apabila ± ialah plus. Tambahkan 30 pada 50.
x=2
Bahagikan 80 dengan 40.
x=-\frac{20}{40}
Sekarang selesaikan persamaan x=\frac{30±50}{40} apabila ± ialah minus. Tolak 50 daripada 30.
x=-\frac{1}{2}
Kurangkan pecahan \frac{-20}{40} kepada sebutan terendah dengan mengeluarkan dan membatalkan 20.
20x^{2}-30x-20=20\left(x-2\right)\left(x-\left(-\frac{1}{2}\right)\right)
Faktorkan ungkapan asal menggunakan ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Gantikan 2 dengan x_{1} dan -\frac{1}{2} dengan x_{2}.
20x^{2}-30x-20=20\left(x-2\right)\left(x+\frac{1}{2}\right)
Permudahkan semua ungkapan dalam bentuk p-\left(-q\right) kepada p+q.
20x^{2}-30x-20=20\left(x-2\right)\times \frac{2x+1}{2}
Tambahkan \frac{1}{2} pada x dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
20x^{2}-30x-20=10\left(x-2\right)\left(2x+1\right)
Batalkan faktor sepunya terbesar 2 dalam 20 dan 2.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}