Faktor
3\left(5x^{2}+4x+3\right)
Nilaikan
15x^{2}+12x+9
Graf
Kongsi
Disalin ke papan klip
3\left(5x^{2}+4x+3\right)
Faktorkan 3. Polinomial 5x^{2}+4x+3 tidak difaktorkan kerana ia tidak mempunyai sebarang punca rasional.
15x^{2}+12x+9=0
Polinomial kuadratik boleh difaktorkan dengan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), apabila x_{1} dan x_{2} merupakan penyelesaian persamaan kuadratik ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 15\times 9}}{2\times 15}
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-12±\sqrt{144-4\times 15\times 9}}{2\times 15}
Kuasa dua 12.
x=\frac{-12±\sqrt{144-60\times 9}}{2\times 15}
Darabkan -4 kali 15.
x=\frac{-12±\sqrt{144-540}}{2\times 15}
Darabkan -60 kali 9.
x=\frac{-12±\sqrt{-396}}{2\times 15}
Tambahkan 144 pada -540.
15x^{2}+12x+9
Oleh kerana punca kuasa dua nombor negatif tidak ditakrifkan dalam medan sebenar, tiada penyelesaian. Polinomial kuadratik tidak boleh difaktorkan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}