Faktor
\left(3x+2\right)\left(4x+3\right)
Nilaikan
\left(3x+2\right)\left(4x+3\right)
Graf
Kongsi
Disalin ke papan klip
a+b=17 ab=12\times 6=72
Faktorkan ungkapan mengikut perkumpulan. Pertama sekali, ungkapan perlu ditulis semula sebagai 12x^{2}+ax+bx+6. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
1,72 2,36 3,24 4,18 6,12 8,9
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah positif, a dan b kedua-duanya positif. Senaraikan semua pasangan integer yang memberikan hasil 72.
1+72=73 2+36=38 3+24=27 4+18=22 6+12=18 8+9=17
Kira jumlah untuk setiap pasangan.
a=8 b=9
Penyelesaian ialah pasangan yang memberikan jumlah 17.
\left(12x^{2}+8x\right)+\left(9x+6\right)
Tulis semula 12x^{2}+17x+6 sebagai \left(12x^{2}+8x\right)+\left(9x+6\right).
4x\left(3x+2\right)+3\left(3x+2\right)
Faktorkan 4x dalam kumpulan pertama dan 3 dalam kumpulan kedua.
\left(3x+2\right)\left(4x+3\right)
Faktorkan sebutan lazim 3x+2 dengan menggunakan sifat kalis agihan.
12x^{2}+17x+6=0
Polinomial kuadratik boleh difaktorkan dengan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), apabila x_{1} dan x_{2} merupakan penyelesaian persamaan kuadratik ax^{2}+bx+c=0.
x=\frac{-17±\sqrt{17^{2}-4\times 12\times 6}}{2\times 12}
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-17±\sqrt{289-4\times 12\times 6}}{2\times 12}
Kuasa dua 17.
x=\frac{-17±\sqrt{289-48\times 6}}{2\times 12}
Darabkan -4 kali 12.
x=\frac{-17±\sqrt{289-288}}{2\times 12}
Darabkan -48 kali 6.
x=\frac{-17±\sqrt{1}}{2\times 12}
Tambahkan 289 pada -288.
x=\frac{-17±1}{2\times 12}
Ambil punca kuasa dua 1.
x=\frac{-17±1}{24}
Darabkan 2 kali 12.
x=-\frac{16}{24}
Sekarang selesaikan persamaan x=\frac{-17±1}{24} apabila ± ialah plus. Tambahkan -17 pada 1.
x=-\frac{2}{3}
Kurangkan pecahan \frac{-16}{24} kepada sebutan terendah dengan mengeluarkan dan membatalkan 8.
x=-\frac{18}{24}
Sekarang selesaikan persamaan x=\frac{-17±1}{24} apabila ± ialah minus. Tolak 1 daripada -17.
x=-\frac{3}{4}
Kurangkan pecahan \frac{-18}{24} kepada sebutan terendah dengan mengeluarkan dan membatalkan 6.
12x^{2}+17x+6=12\left(x-\left(-\frac{2}{3}\right)\right)\left(x-\left(-\frac{3}{4}\right)\right)
Faktorkan ungkapan asal menggunakan ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Gantikan -\frac{2}{3} dengan x_{1} dan -\frac{3}{4} dengan x_{2}.
12x^{2}+17x+6=12\left(x+\frac{2}{3}\right)\left(x+\frac{3}{4}\right)
Permudahkan semua ungkapan dalam bentuk p-\left(-q\right) kepada p+q.
12x^{2}+17x+6=12\times \frac{3x+2}{3}\left(x+\frac{3}{4}\right)
Tambahkan \frac{2}{3} pada x dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
12x^{2}+17x+6=12\times \frac{3x+2}{3}\times \frac{4x+3}{4}
Tambahkan \frac{3}{4} pada x dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
12x^{2}+17x+6=12\times \frac{\left(3x+2\right)\left(4x+3\right)}{3\times 4}
Darabkan \frac{3x+2}{3} dengan \frac{4x+3}{4} dengan mendarabkan pengangka dengan pengangka dan penyebut dengan penyebut. Kemudian kurangkan pecahan tersebut ke sebutan terendah yang mungkin.
12x^{2}+17x+6=12\times \frac{\left(3x+2\right)\left(4x+3\right)}{12}
Darabkan 3 kali 4.
12x^{2}+17x+6=\left(3x+2\right)\left(4x+3\right)
Batalkan faktor sepunya terbesar 12 dalam 12 dan 12.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}