Langkau ke kandungan utama
Selesaikan untuk h
Tick mark Image

Masalah Sama dari Carian Web

Kongsi

h^{2}=1024
Tukar bahagian supaya semua sebutan pemboleh ubah berada di sebelah kiri.
h^{2}-1024=0
Tolak 1024 daripada kedua-dua belah.
\left(h-32\right)\left(h+32\right)=0
Pertimbangkan h^{2}-1024. Tulis semula h^{2}-1024 sebagai h^{2}-32^{2}. Perbezaannya segi empat boleh difaktorkan dengan menggunakan peraturan: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
h=32 h=-32
Untuk mencari penyelesaian persamaan, selesaikan h-32=0 dan h+32=0.
h^{2}=1024
Tukar bahagian supaya semua sebutan pemboleh ubah berada di sebelah kiri.
h=32 h=-32
Ambil punca kuasa dua kedua-dua belah persamaan.
h^{2}=1024
Tukar bahagian supaya semua sebutan pemboleh ubah berada di sebelah kiri.
h^{2}-1024=0
Tolak 1024 daripada kedua-dua belah.
h=\frac{0±\sqrt{0^{2}-4\left(-1024\right)}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, 0 dengan b dan -1024 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{0±\sqrt{-4\left(-1024\right)}}{2}
Kuasa dua 0.
h=\frac{0±\sqrt{4096}}{2}
Darabkan -4 kali -1024.
h=\frac{0±64}{2}
Ambil punca kuasa dua 4096.
h=32
Sekarang selesaikan persamaan h=\frac{0±64}{2} apabila ± ialah plus. Bahagikan 64 dengan 2.
h=-32
Sekarang selesaikan persamaan h=\frac{0±64}{2} apabila ± ialah minus. Bahagikan -64 dengan 2.
h=32 h=-32
Persamaan kini diselesaikan.