Selesaikan untuk x
x=\frac{\sqrt{2400009}-3}{400000}\approx 0.003865491
x=\frac{-\sqrt{2400009}-3}{400000}\approx -0.003880491
Graf
Kongsi
Disalin ke papan klip
1.5\times 10^{-5}\left(-x+1\right)=x^{2}
Pemboleh ubah x tidak boleh sama dengan 1 kerana pembahagian dengan sifar tidak ditakrifkan. Darabkan kedua-dua belah persamaan dengan -x+1.
1.5\times \frac{1}{100000}\left(-x+1\right)=x^{2}
Kira 10 dikuasakan -5 dan dapatkan \frac{1}{100000}.
\frac{3}{200000}\left(-x+1\right)=x^{2}
Darabkan 1.5 dan \frac{1}{100000} untuk mendapatkan \frac{3}{200000}.
-\frac{3}{200000}x+\frac{3}{200000}=x^{2}
Gunakan sifat kalis agihan untuk mendarab \frac{3}{200000} dengan -x+1.
-\frac{3}{200000}x+\frac{3}{200000}-x^{2}=0
Tolak x^{2} daripada kedua-dua belah.
-x^{2}-\frac{3}{200000}x+\frac{3}{200000}=0
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\left(-\frac{3}{200000}\right)^{2}-4\left(-1\right)\times \frac{3}{200000}}}{2\left(-1\right)}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan -1 dengan a, -\frac{3}{200000} dengan b dan \frac{3}{200000} dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}-4\left(-1\right)\times \frac{3}{200000}}}{2\left(-1\right)}
Kuasa duakan -\frac{3}{200000} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}+4\times \frac{3}{200000}}}{2\left(-1\right)}
Darabkan -4 kali -1.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{9}{40000000000}+\frac{3}{50000}}}{2\left(-1\right)}
Darabkan 4 kali \frac{3}{200000}.
x=\frac{-\left(-\frac{3}{200000}\right)±\sqrt{\frac{2400009}{40000000000}}}{2\left(-1\right)}
Tambahkan \frac{9}{40000000000} pada \frac{3}{50000} dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
x=\frac{-\left(-\frac{3}{200000}\right)±\frac{\sqrt{2400009}}{200000}}{2\left(-1\right)}
Ambil punca kuasa dua \frac{2400009}{40000000000}.
x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{2\left(-1\right)}
Nombor bertentangan -\frac{3}{200000} ialah \frac{3}{200000}.
x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2}
Darabkan 2 kali -1.
x=\frac{\sqrt{2400009}+3}{-2\times 200000}
Sekarang selesaikan persamaan x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2} apabila ± ialah plus. Tambahkan \frac{3}{200000} pada \frac{\sqrt{2400009}}{200000}.
x=\frac{-\sqrt{2400009}-3}{400000}
Bahagikan \frac{3+\sqrt{2400009}}{200000} dengan -2.
x=\frac{3-\sqrt{2400009}}{-2\times 200000}
Sekarang selesaikan persamaan x=\frac{\frac{3}{200000}±\frac{\sqrt{2400009}}{200000}}{-2} apabila ± ialah minus. Tolak \frac{\sqrt{2400009}}{200000} daripada \frac{3}{200000}.
x=\frac{\sqrt{2400009}-3}{400000}
Bahagikan \frac{3-\sqrt{2400009}}{200000} dengan -2.
x=\frac{-\sqrt{2400009}-3}{400000} x=\frac{\sqrt{2400009}-3}{400000}
Persamaan kini diselesaikan.
1.5\times 10^{-5}\left(-x+1\right)=x^{2}
Pemboleh ubah x tidak boleh sama dengan 1 kerana pembahagian dengan sifar tidak ditakrifkan. Darabkan kedua-dua belah persamaan dengan -x+1.
1.5\times \frac{1}{100000}\left(-x+1\right)=x^{2}
Kira 10 dikuasakan -5 dan dapatkan \frac{1}{100000}.
\frac{3}{200000}\left(-x+1\right)=x^{2}
Darabkan 1.5 dan \frac{1}{100000} untuk mendapatkan \frac{3}{200000}.
-\frac{3}{200000}x+\frac{3}{200000}=x^{2}
Gunakan sifat kalis agihan untuk mendarab \frac{3}{200000} dengan -x+1.
-\frac{3}{200000}x+\frac{3}{200000}-x^{2}=0
Tolak x^{2} daripada kedua-dua belah.
-\frac{3}{200000}x-x^{2}=-\frac{3}{200000}
Tolak \frac{3}{200000} daripada kedua-dua belah. Apa-apa sahaja yang ditolak daripada sifar menjadikannya negatif.
-x^{2}-\frac{3}{200000}x=-\frac{3}{200000}
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
\frac{-x^{2}-\frac{3}{200000}x}{-1}=-\frac{\frac{3}{200000}}{-1}
Bahagikan kedua-dua belah dengan -1.
x^{2}+\left(-\frac{\frac{3}{200000}}{-1}\right)x=-\frac{\frac{3}{200000}}{-1}
Membahagi dengan -1 membuat asal pendaraban dengan -1.
x^{2}+\frac{3}{200000}x=-\frac{\frac{3}{200000}}{-1}
Bahagikan -\frac{3}{200000} dengan -1.
x^{2}+\frac{3}{200000}x=\frac{3}{200000}
Bahagikan -\frac{3}{200000} dengan -1.
x^{2}+\frac{3}{200000}x+\left(\frac{3}{400000}\right)^{2}=\frac{3}{200000}+\left(\frac{3}{400000}\right)^{2}
Bahagikan \frac{3}{200000} iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan \frac{3}{400000}. Kemudian tambahkan kuasa dua \frac{3}{400000} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}=\frac{3}{200000}+\frac{9}{160000000000}
Kuasa duakan \frac{3}{400000} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}=\frac{2400009}{160000000000}
Tambahkan \frac{3}{200000} pada \frac{9}{160000000000} dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
\left(x+\frac{3}{400000}\right)^{2}=\frac{2400009}{160000000000}
Faktor x^{2}+\frac{3}{200000}x+\frac{9}{160000000000}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{400000}\right)^{2}}=\sqrt{\frac{2400009}{160000000000}}
Ambil punca kuasa dua kedua-dua belah persamaan.
x+\frac{3}{400000}=\frac{\sqrt{2400009}}{400000} x+\frac{3}{400000}=-\frac{\sqrt{2400009}}{400000}
Permudahkan.
x=\frac{\sqrt{2400009}-3}{400000} x=\frac{-\sqrt{2400009}-3}{400000}
Tolak \frac{3}{400000} daripada kedua-dua belah persamaan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}