Selesaikan untuk x
x=3
x=-1
Graf
Kongsi
Disalin ke papan klip
0=2\left(x-1\right)^{2}-8
Darabkan x-1 dan x-1 untuk mendapatkan \left(x-1\right)^{2}.
0=2\left(x^{2}-2x+1\right)-8
Gunakan teorem binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} untuk mengembangkan \left(x-1\right)^{2}.
0=2x^{2}-4x+2-8
Gunakan sifat kalis agihan untuk mendarab 2 dengan x^{2}-2x+1.
0=2x^{2}-4x-6
Tolak 8 daripada 2 untuk mendapatkan -6.
2x^{2}-4x-6=0
Tukar bahagian supaya semua sebutan pemboleh ubah berada di sebelah kiri.
x^{2}-2x-3=0
Bahagikan kedua-dua belah dengan 2.
a+b=-2 ab=1\left(-3\right)=-3
Untuk menyelesaikan persamaan, faktorkan sebelah kiri mengikut perkumpulan. Pertama sekali, sebelah kiri perlu ditulis semula sebagai x^{2}+ax+bx-3. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
a=-3 b=1
Oleh kerana ab adalah negatif, a dan b mempunyai tanda yang bertentangan. Oleh kerana a+b adalah negatif, nombor negatif mempunyai nilai mutlak yang lebih besar daripada positif. Satu-satunya pasangan itu ialah penyelesaian sistem.
\left(x^{2}-3x\right)+\left(x-3\right)
Tulis semula x^{2}-2x-3 sebagai \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Faktorkan x dalam x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Faktorkan sebutan lazim x-3 dengan menggunakan sifat kalis agihan.
x=3 x=-1
Untuk mencari penyelesaian persamaan, selesaikan x-3=0 dan x+1=0.
0=2\left(x-1\right)^{2}-8
Darabkan x-1 dan x-1 untuk mendapatkan \left(x-1\right)^{2}.
0=2\left(x^{2}-2x+1\right)-8
Gunakan teorem binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} untuk mengembangkan \left(x-1\right)^{2}.
0=2x^{2}-4x+2-8
Gunakan sifat kalis agihan untuk mendarab 2 dengan x^{2}-2x+1.
0=2x^{2}-4x-6
Tolak 8 daripada 2 untuk mendapatkan -6.
2x^{2}-4x-6=0
Tukar bahagian supaya semua sebutan pemboleh ubah berada di sebelah kiri.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 2 dengan a, -4 dengan b dan -6 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
Kuasa dua -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-6\right)}}{2\times 2}
Darabkan -4 kali 2.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 2}
Darabkan -8 kali -6.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 2}
Tambahkan 16 pada 48.
x=\frac{-\left(-4\right)±8}{2\times 2}
Ambil punca kuasa dua 64.
x=\frac{4±8}{2\times 2}
Nombor bertentangan -4 ialah 4.
x=\frac{4±8}{4}
Darabkan 2 kali 2.
x=\frac{12}{4}
Sekarang selesaikan persamaan x=\frac{4±8}{4} apabila ± ialah plus. Tambahkan 4 pada 8.
x=3
Bahagikan 12 dengan 4.
x=-\frac{4}{4}
Sekarang selesaikan persamaan x=\frac{4±8}{4} apabila ± ialah minus. Tolak 8 daripada 4.
x=-1
Bahagikan -4 dengan 4.
x=3 x=-1
Persamaan kini diselesaikan.
0=2\left(x-1\right)^{2}-8
Darabkan x-1 dan x-1 untuk mendapatkan \left(x-1\right)^{2}.
0=2\left(x^{2}-2x+1\right)-8
Gunakan teorem binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} untuk mengembangkan \left(x-1\right)^{2}.
0=2x^{2}-4x+2-8
Gunakan sifat kalis agihan untuk mendarab 2 dengan x^{2}-2x+1.
0=2x^{2}-4x-6
Tolak 8 daripada 2 untuk mendapatkan -6.
2x^{2}-4x-6=0
Tukar bahagian supaya semua sebutan pemboleh ubah berada di sebelah kiri.
2x^{2}-4x=6
Tambahkan 6 pada kedua-dua belah. Apa-apa sahaja yang ditambahkan pada sifar menjadikannya nombor itu sendiri.
\frac{2x^{2}-4x}{2}=\frac{6}{2}
Bahagikan kedua-dua belah dengan 2.
x^{2}+\left(-\frac{4}{2}\right)x=\frac{6}{2}
Membahagi dengan 2 membuat asal pendaraban dengan 2.
x^{2}-2x=\frac{6}{2}
Bahagikan -4 dengan 2.
x^{2}-2x=3
Bahagikan 6 dengan 2.
x^{2}-2x+1=3+1
Bahagikan -2 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan -1. Kemudian tambahkan kuasa dua -1 pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}-2x+1=4
Tambahkan 3 pada 1.
\left(x-1\right)^{2}=4
Faktor x^{2}-2x+1. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-1=2 x-1=-2
Permudahkan.
x=3 x=-1
Tambahkan 1 pada kedua-dua belah persamaan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}