Langkau ke kandungan utama
Selesaikan untuk x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

x^{2}+11x-8=0
Tukar bahagian supaya semua sebutan pemboleh ubah berada di sebelah kiri.
x=\frac{-11±\sqrt{11^{2}-4\left(-8\right)}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, 11 dengan b dan -8 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-8\right)}}{2}
Kuasa dua 11.
x=\frac{-11±\sqrt{121+32}}{2}
Darabkan -4 kali -8.
x=\frac{-11±\sqrt{153}}{2}
Tambahkan 121 pada 32.
x=\frac{-11±3\sqrt{17}}{2}
Ambil punca kuasa dua 153.
x=\frac{3\sqrt{17}-11}{2}
Sekarang selesaikan persamaan x=\frac{-11±3\sqrt{17}}{2} apabila ± ialah plus. Tambahkan -11 pada 3\sqrt{17}.
x=\frac{-3\sqrt{17}-11}{2}
Sekarang selesaikan persamaan x=\frac{-11±3\sqrt{17}}{2} apabila ± ialah minus. Tolak 3\sqrt{17} daripada -11.
x=\frac{3\sqrt{17}-11}{2} x=\frac{-3\sqrt{17}-11}{2}
Persamaan kini diselesaikan.
x^{2}+11x-8=0
Tukar bahagian supaya semua sebutan pemboleh ubah berada di sebelah kiri.
x^{2}+11x=8
Tambahkan 8 pada kedua-dua belah. Apa-apa sahaja yang ditambahkan pada sifar menjadikannya nombor itu sendiri.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=8+\left(\frac{11}{2}\right)^{2}
Bahagikan 11 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan \frac{11}{2}. Kemudian tambahkan kuasa dua \frac{11}{2} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}+11x+\frac{121}{4}=8+\frac{121}{4}
Kuasa duakan \frac{11}{2} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
x^{2}+11x+\frac{121}{4}=\frac{153}{4}
Tambahkan 8 pada \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{153}{4}
Faktor x^{2}+11x+\frac{121}{4}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
Ambil punca kuasa dua kedua-dua belah persamaan.
x+\frac{11}{2}=\frac{3\sqrt{17}}{2} x+\frac{11}{2}=-\frac{3\sqrt{17}}{2}
Permudahkan.
x=\frac{3\sqrt{17}-11}{2} x=\frac{-3\sqrt{17}-11}{2}
Tolak \frac{11}{2} daripada kedua-dua belah persamaan.