Langkau ke kandungan utama
Faktor
Tick mark Image
Nilaikan
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

-x^{2}-2x+1=0
Polinomial kuadratik boleh difaktorkan dengan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), apabila x_{1} dan x_{2} merupakan penyelesaian persamaan kuadratik ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)}}{2\left(-1\right)}
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)}}{2\left(-1\right)}
Kuasa dua -2.
x=\frac{-\left(-2\right)±\sqrt{4+4}}{2\left(-1\right)}
Darabkan -4 kali -1.
x=\frac{-\left(-2\right)±\sqrt{8}}{2\left(-1\right)}
Tambahkan 4 pada 4.
x=\frac{-\left(-2\right)±2\sqrt{2}}{2\left(-1\right)}
Ambil punca kuasa dua 8.
x=\frac{2±2\sqrt{2}}{2\left(-1\right)}
Nombor bertentangan -2 ialah 2.
x=\frac{2±2\sqrt{2}}{-2}
Darabkan 2 kali -1.
x=\frac{2\sqrt{2}+2}{-2}
Sekarang selesaikan persamaan x=\frac{2±2\sqrt{2}}{-2} apabila ± ialah plus. Tambahkan 2 pada 2\sqrt{2}.
x=-\left(\sqrt{2}+1\right)
Bahagikan 2+2\sqrt{2} dengan -2.
x=\frac{2-2\sqrt{2}}{-2}
Sekarang selesaikan persamaan x=\frac{2±2\sqrt{2}}{-2} apabila ± ialah minus. Tolak 2\sqrt{2} daripada 2.
x=\sqrt{2}-1
Bahagikan 2-2\sqrt{2} dengan -2.
-x^{2}-2x+1=-\left(x-\left(-\left(\sqrt{2}+1\right)\right)\right)\left(x-\left(\sqrt{2}-1\right)\right)
Faktorkan ungkapan asal menggunakan ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Gantikan -\left(1+\sqrt{2}\right) dengan x_{1} dan -1+\sqrt{2} dengan x_{2}.