Langkau ke kandungan utama
Selesaikan untuk x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

x^{2}-x-12=6
Gunakan sifat kalis agihan untuk mendarab x-4 dengan x+3 dan gabungkan sebutan yang serupa.
x^{2}-x-12-6=0
Tolak 6 daripada kedua-dua belah.
x^{2}-x-18=0
Tolak 6 daripada -12 untuk mendapatkan -18.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-18\right)}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, -1 dengan b dan -18 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+72}}{2}
Darabkan -4 kali -18.
x=\frac{-\left(-1\right)±\sqrt{73}}{2}
Tambahkan 1 pada 72.
x=\frac{1±\sqrt{73}}{2}
Nombor bertentangan -1 ialah 1.
x=\frac{\sqrt{73}+1}{2}
Sekarang selesaikan persamaan x=\frac{1±\sqrt{73}}{2} apabila ± ialah plus. Tambahkan 1 pada \sqrt{73}.
x=\frac{1-\sqrt{73}}{2}
Sekarang selesaikan persamaan x=\frac{1±\sqrt{73}}{2} apabila ± ialah minus. Tolak \sqrt{73} daripada 1.
x=\frac{\sqrt{73}+1}{2} x=\frac{1-\sqrt{73}}{2}
Persamaan kini diselesaikan.
x^{2}-x-12=6
Gunakan sifat kalis agihan untuk mendarab x-4 dengan x+3 dan gabungkan sebutan yang serupa.
x^{2}-x=6+12
Tambahkan 12 pada kedua-dua belah.
x^{2}-x=18
Tambahkan 6 dan 12 untuk dapatkan 18.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=18+\left(-\frac{1}{2}\right)^{2}
Bahagikan -1 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan -\frac{1}{2}. Kemudian tambahkan kuasa dua -\frac{1}{2} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}-x+\frac{1}{4}=18+\frac{1}{4}
Kuasa duakan -\frac{1}{2} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
x^{2}-x+\frac{1}{4}=\frac{73}{4}
Tambahkan 18 pada \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{73}{4}
Faktor x^{2}-x+\frac{1}{4}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{73}{4}}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-\frac{1}{2}=\frac{\sqrt{73}}{2} x-\frac{1}{2}=-\frac{\sqrt{73}}{2}
Permudahkan.
x=\frac{\sqrt{73}+1}{2} x=\frac{1-\sqrt{73}}{2}
Tambahkan \frac{1}{2} pada kedua-dua belah persamaan.