Selesaikan untuk x
x = \frac{\sqrt{13} + 1}{2} \approx 2.302775638
x=\frac{1-\sqrt{13}}{2}\approx -1.302775638
Graf
Kongsi
Disalin ke papan klip
x+1-\left(x^{2}-9\right)=7
Pertimbangkan \left(x-3\right)\left(x+3\right). Pendaraban boleh diubah menjadi perbezaan kuasa dua dengan menggunakan peraturan: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kuasa dua 3.
x+1-x^{2}+9=7
Untuk mencari yang bertentangan dengan x^{2}-9, cari yang bertentangan dengan setiap sebutan.
x+10-x^{2}=7
Tambahkan 1 dan 9 untuk dapatkan 10.
x+10-x^{2}-7=0
Tolak 7 daripada kedua-dua belah.
x+3-x^{2}=0
Tolak 7 daripada 10 untuk mendapatkan 3.
-x^{2}+x+3=0
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan -1 dengan a, 1 dengan b dan 3 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 3}}{2\left(-1\right)}
Kuasa dua 1.
x=\frac{-1±\sqrt{1+4\times 3}}{2\left(-1\right)}
Darabkan -4 kali -1.
x=\frac{-1±\sqrt{1+12}}{2\left(-1\right)}
Darabkan 4 kali 3.
x=\frac{-1±\sqrt{13}}{2\left(-1\right)}
Tambahkan 1 pada 12.
x=\frac{-1±\sqrt{13}}{-2}
Darabkan 2 kali -1.
x=\frac{\sqrt{13}-1}{-2}
Sekarang selesaikan persamaan x=\frac{-1±\sqrt{13}}{-2} apabila ± ialah plus. Tambahkan -1 pada \sqrt{13}.
x=\frac{1-\sqrt{13}}{2}
Bahagikan -1+\sqrt{13} dengan -2.
x=\frac{-\sqrt{13}-1}{-2}
Sekarang selesaikan persamaan x=\frac{-1±\sqrt{13}}{-2} apabila ± ialah minus. Tolak \sqrt{13} daripada -1.
x=\frac{\sqrt{13}+1}{2}
Bahagikan -1-\sqrt{13} dengan -2.
x=\frac{1-\sqrt{13}}{2} x=\frac{\sqrt{13}+1}{2}
Persamaan kini diselesaikan.
x+1-\left(x^{2}-9\right)=7
Pertimbangkan \left(x-3\right)\left(x+3\right). Pendaraban boleh diubah menjadi perbezaan kuasa dua dengan menggunakan peraturan: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Kuasa dua 3.
x+1-x^{2}+9=7
Untuk mencari yang bertentangan dengan x^{2}-9, cari yang bertentangan dengan setiap sebutan.
x+10-x^{2}=7
Tambahkan 1 dan 9 untuk dapatkan 10.
x-x^{2}=7-10
Tolak 10 daripada kedua-dua belah.
x-x^{2}=-3
Tolak 10 daripada 7 untuk mendapatkan -3.
-x^{2}+x=-3
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
\frac{-x^{2}+x}{-1}=-\frac{3}{-1}
Bahagikan kedua-dua belah dengan -1.
x^{2}+\frac{1}{-1}x=-\frac{3}{-1}
Membahagi dengan -1 membuat asal pendaraban dengan -1.
x^{2}-x=-\frac{3}{-1}
Bahagikan 1 dengan -1.
x^{2}-x=3
Bahagikan -3 dengan -1.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=3+\left(-\frac{1}{2}\right)^{2}
Bahagikan -1 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan -\frac{1}{2}. Kemudian tambahkan kuasa dua -\frac{1}{2} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}-x+\frac{1}{4}=3+\frac{1}{4}
Kuasa duakan -\frac{1}{2} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
x^{2}-x+\frac{1}{4}=\frac{13}{4}
Tambahkan 3 pada \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{13}{4}
Faktor x^{2}-x+\frac{1}{4}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-\frac{1}{2}=\frac{\sqrt{13}}{2} x-\frac{1}{2}=-\frac{\sqrt{13}}{2}
Permudahkan.
x=\frac{\sqrt{13}+1}{2} x=\frac{1-\sqrt{13}}{2}
Tambahkan \frac{1}{2} pada kedua-dua belah persamaan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}