Langkau ke kandungan utama
Nilaikan
Tick mark Image
Bezakan w.r.t. x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

\left(x^{\frac{7}{5}}\right)^{-\frac{5}{3}}
Gunakan petua eksponen untuk permudahkan ungkapan.
x^{\frac{7}{5}\left(-\frac{5}{3}\right)}
Untuk meningkatkan kuasa kepada kuasa lain, darabkan eksponen.
\frac{1}{x^{\frac{7}{3}}}
Darabkan \frac{7}{5} dengan -\frac{5}{3} dengan mendarabkan pengangka dengan pengangka dan penyebut dengan penyebut. Kemudian kurangkan pecahan tersebut ke sebutan terendah yang mungkin.
-\frac{5}{3}\left(x^{\frac{7}{5}}\right)^{-\frac{5}{3}-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{\frac{7}{5}})
Jika F adalah komposisi dua fungsi terbezakan f\left(u\right) dan u=g\left(x\right), iaitu, jika F\left(x\right)=f\left(g\left(x\right)\right), maka terbitan F adalah terbitan f yang berkenaan dengan u didarabkan dengan terbitan g yang berkenaan dengan x, iaitu, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{5}{3}\left(x^{\frac{7}{5}}\right)^{-\frac{8}{3}}\times \frac{7}{5}x^{\frac{7}{5}-1}
Terbitan polinomial ialah hasil tambah terbitan sebutannya. Terbitan sebutan pemalar ialah 0. Terbitan ax^{n} ialah nax^{n-1}.
-\frac{7}{3}x^{\frac{2}{5}}\left(x^{\frac{7}{5}}\right)^{-\frac{8}{3}}
Permudahkan.