Selesaikan untuk N
N=2+\frac{480}{P}
P\neq 0
Selesaikan untuk P
P=\frac{480}{N-2}
N\neq 2
Kongsi
Disalin ke papan klip
\left(NP-2P\right)\times 1.2-576=0
Gunakan sifat kalis agihan untuk mendarab N-2 dengan P.
1.2NP-2.4P-576=0
Gunakan sifat kalis agihan untuk mendarab NP-2P dengan 1.2.
1.2NP-576=2.4P
Tambahkan 2.4P pada kedua-dua belah. Apa-apa sahaja yang ditambahkan pada sifar menjadikannya nombor itu sendiri.
1.2NP=2.4P+576
Tambahkan 576 pada kedua-dua belah.
\frac{6P}{5}N=\frac{12P}{5}+576
Persamaan tersebut adalah dalam bentuk piawai.
\frac{5\times \frac{6P}{5}N}{6P}=\frac{5\left(\frac{12P}{5}+576\right)}{6P}
Bahagikan kedua-dua belah dengan 1.2P.
N=\frac{5\left(\frac{12P}{5}+576\right)}{6P}
Membahagi dengan 1.2P membuat asal pendaraban dengan 1.2P.
N=2+\frac{480}{P}
Bahagikan \frac{12P}{5}+576 dengan 1.2P.
\left(NP-2P\right)\times 1.2-576=0
Gunakan sifat kalis agihan untuk mendarab N-2 dengan P.
1.2NP-2.4P-576=0
Gunakan sifat kalis agihan untuk mendarab NP-2P dengan 1.2.
1.2NP-2.4P=576
Tambahkan 576 pada kedua-dua belah. Apa-apa sahaja yang ditambahkan pada sifar menjadikannya nombor itu sendiri.
\left(1.2N-2.4\right)P=576
Gabungkan semua sebutan yang mengandungi P.
\frac{6N-12}{5}P=576
Persamaan tersebut adalah dalam bentuk piawai.
\frac{5\times \frac{6N-12}{5}P}{6N-12}=\frac{5\times 576}{6N-12}
Bahagikan kedua-dua belah dengan 1.2N-2.4.
P=\frac{5\times 576}{6N-12}
Membahagi dengan 1.2N-2.4 membuat asal pendaraban dengan 1.2N-2.4.
P=\frac{2880}{6N-12}
Bahagikan 576 dengan 1.2N-2.4.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}