Langkau ke kandungan utama
Faktor
Tick mark Image
Nilaikan
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

factor(3x^{2}+5x-3)
Tolak 6 daripada 3 untuk mendapatkan -3.
3x^{2}+5x-3=0
Polinomial kuadratik boleh difaktorkan dengan menggunakan transformasi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), apabila x_{1} dan x_{2} merupakan penyelesaian persamaan kuadratik ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-3\right)}}{2\times 3}
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-5±\sqrt{25-4\times 3\left(-3\right)}}{2\times 3}
Kuasa dua 5.
x=\frac{-5±\sqrt{25-12\left(-3\right)}}{2\times 3}
Darabkan -4 kali 3.
x=\frac{-5±\sqrt{25+36}}{2\times 3}
Darabkan -12 kali -3.
x=\frac{-5±\sqrt{61}}{2\times 3}
Tambahkan 25 pada 36.
x=\frac{-5±\sqrt{61}}{6}
Darabkan 2 kali 3.
x=\frac{\sqrt{61}-5}{6}
Sekarang selesaikan persamaan x=\frac{-5±\sqrt{61}}{6} apabila ± ialah plus. Tambahkan -5 pada \sqrt{61}.
x=\frac{-\sqrt{61}-5}{6}
Sekarang selesaikan persamaan x=\frac{-5±\sqrt{61}}{6} apabila ± ialah minus. Tolak \sqrt{61} daripada -5.
3x^{2}+5x-3=3\left(x-\frac{\sqrt{61}-5}{6}\right)\left(x-\frac{-\sqrt{61}-5}{6}\right)
Faktorkan ungkapan asal menggunakan ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Gantikan \frac{-5+\sqrt{61}}{6} dengan x_{1} dan \frac{-5-\sqrt{61}}{6} dengan x_{2}.
3x^{2}+5x-3
Tolak 6 daripada 3 untuk mendapatkan -3.