Nilaikan
\frac{4x^{8}-8x^{7}-28x^{6}+48x^{5}+75x^{4}-90x^{3}-101x^{2}+60x+61}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}
Kembangkan
\frac{4x^{8}-8x^{7}-28x^{6}+48x^{5}+75x^{4}-90x^{3}-101x^{2}+60x+61}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}
Graf
Kongsi
Disalin ke papan klip
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Darabkan 2x^{2} kali \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
Oleh kerana \frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} dan \frac{1}{\left(x-2\right)\left(x+1\right)} mempunyai penyebut yang sama, tolakkan dengan menolakkan pengangka.
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
Lakukan pendaraban dalam 2x^{2}\left(x-2\right)\left(x+1\right)-1.
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
Gabungkan sebutan serupa dalam 2x^{4}+2x^{3}-4x^{3}-4x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7
Untuk meningkatkan \frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)} kepada kuasa, tingkatkan kedua-dua pengangka dan penyebut kepada kuasa dan kemudian bahagi.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7
Kembangkan \left(\left(x-2\right)\left(x+1\right)\right)^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7
Gunakan sifat kalis agihan untuk mendarab -8 dengan 2x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+15
Tambahkan 8 dan 7 untuk dapatkan 15.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Darabkan -16x^{2}+15 kali \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Oleh kerana \frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} dan \frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} mempunyai penyebut yang sama, tambahkan dengan menambahkan pengangka.
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Lakukan pendaraban dalam \left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}.
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Gabungkan sebutan serupa dalam 4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60.
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{x^{4}-2x^{3}-3x^{2}+4x+4}
Kembangkan \left(x-2\right)^{2}\left(x+1\right)^{2}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Darabkan 2x^{2} kali \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(\frac{2x^{2}\left(x-2\right)\left(x+1\right)-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
Oleh kerana \frac{2x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} dan \frac{1}{\left(x-2\right)\left(x+1\right)} mempunyai penyebut yang sama, tolakkan dengan menolakkan pengangka.
\left(\frac{2x^{4}+2x^{3}-4x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
Lakukan pendaraban dalam 2x^{2}\left(x-2\right)\left(x+1\right)-1.
\left(\frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)}\right)^{2}-8\left(2x^{2}-1\right)+7
Gabungkan sebutan serupa dalam 2x^{4}+2x^{3}-4x^{3}-4x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(\left(x-2\right)\left(x+1\right)\right)^{2}}-8\left(2x^{2}-1\right)+7
Untuk meningkatkan \frac{2x^{4}-2x^{3}-4x^{2}-1}{\left(x-2\right)\left(x+1\right)} kepada kuasa, tingkatkan kedua-dua pengangka dan penyebut kepada kuasa dan kemudian bahagi.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-8\left(2x^{2}-1\right)+7
Kembangkan \left(\left(x-2\right)\left(x+1\right)\right)^{2}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+8+7
Gunakan sifat kalis agihan untuk mendarab -8 dengan 2x^{2}-1.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}-16x^{2}+15
Tambahkan 8 dan 7 untuk dapatkan 15.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}+\frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Darabkan -16x^{2}+15 kali \frac{\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}.
\frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Oleh kerana \frac{\left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} dan \frac{\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}}{\left(x-2\right)^{2}\left(x+1\right)^{2}} mempunyai penyebut yang sama, tambahkan dengan menambahkan pengangka.
\frac{4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Lakukan pendaraban dalam \left(2x^{4}-2x^{3}-4x^{2}-1\right)^{2}+\left(-16x^{2}+15\right)\left(x-2\right)^{2}\left(x+1\right)^{2}.
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{\left(x-2\right)^{2}\left(x+1\right)^{2}}
Gabungkan sebutan serupa dalam 4x^{8}-4x^{7}-8x^{6}-2x^{4}-4x^{7}+4x^{6}+8x^{5}+2x^{3}-8x^{6}+8x^{5}+16x^{4}+4x^{2}-2x^{4}+2x^{3}+4x^{2}+1-16x^{6}+32x^{5}+48x^{4}-64x^{3}-64x^{2}+15x^{4}-30x^{3}-45x^{2}+60x+60.
\frac{4x^{8}-8x^{7}-28x^{6}+75x^{4}+48x^{5}-90x^{3}-101x^{2}+61+60x}{x^{4}-2x^{3}-3x^{2}+4x+4}
Kembangkan \left(x-2\right)^{2}\left(x+1\right)^{2}.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}