Langkau ke kandungan utama
Faktor
Tick mark Image
Nilaikan
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

\left(x+4\right)\left(x^{2}+3x+2\right)
Dengan Teorem Punca Nisbah, semua punca nisbah polinomial adalah dalam bentuk \frac{p}{q}, apabila p membahagikan sebutan malar 8 dan q membahagikan pekali pelopor 1. Salah satu punca adalah -4. Faktorkan polinomial dengan membahagikannya dengan x+4.
a+b=3 ab=1\times 2=2
Pertimbangkan x^{2}+3x+2. Faktorkan ungkapan mengikut perkumpulan. Pertama sekali, ungkapan perlu ditulis semula sebagai x^{2}+ax+bx+2. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
a=1 b=2
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah positif, a dan b kedua-duanya positif. Satu-satunya pasangan itu ialah penyelesaian sistem.
\left(x^{2}+x\right)+\left(2x+2\right)
Tulis semula x^{2}+3x+2 sebagai \left(x^{2}+x\right)+\left(2x+2\right).
x\left(x+1\right)+2\left(x+1\right)
Faktorkan x dalam kumpulan pertama dan 2 dalam kumpulan kedua.
\left(x+1\right)\left(x+2\right)
Faktorkan sebutan lazim x+1 dengan menggunakan sifat kalis agihan.
\left(x+1\right)\left(x+2\right)\left(x+4\right)
Tulis semula ungkapan difaktorkan yang lengkap.