Langkau ke kandungan utama
Selesaikan untuk x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

a+b=-1 ab=-2
Untuk menyelesaikan persamaan, faktorkan x^{2}-x-2 menggunakan formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
a=-2 b=1
Oleh kerana ab adalah negatif, a dan b mempunyai tanda yang bertentangan. Oleh kerana a+b adalah negatif, nombor negatif mempunyai nilai mutlak yang lebih besar daripada positif. Satu-satunya pasangan itu ialah penyelesaian sistem.
\left(x-2\right)\left(x+1\right)
Tulis semula ungkapan \left(x+a\right)\left(x+b\right) yang difaktorkan dengan menggunakan nilai yang diperolehi.
x=2 x=-1
Untuk mencari penyelesaian persamaan, selesaikan x-2=0 dan x+1=0.
a+b=-1 ab=1\left(-2\right)=-2
Untuk menyelesaikan persamaan, faktorkan sebelah kiri mengikut perkumpulan. Pertama sekali, sebelah kiri perlu ditulis semula sebagai x^{2}+ax+bx-2. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
a=-2 b=1
Oleh kerana ab adalah negatif, a dan b mempunyai tanda yang bertentangan. Oleh kerana a+b adalah negatif, nombor negatif mempunyai nilai mutlak yang lebih besar daripada positif. Satu-satunya pasangan itu ialah penyelesaian sistem.
\left(x^{2}-2x\right)+\left(x-2\right)
Tulis semula x^{2}-x-2 sebagai \left(x^{2}-2x\right)+\left(x-2\right).
x\left(x-2\right)+x-2
Faktorkan x dalam x^{2}-2x.
\left(x-2\right)\left(x+1\right)
Faktorkan sebutan lazim x-2 dengan menggunakan sifat kalis agihan.
x=2 x=-1
Untuk mencari penyelesaian persamaan, selesaikan x-2=0 dan x+1=0.
x^{2}-x-2=0
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, -1 dengan b dan -2 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2}
Darabkan -4 kali -2.
x=\frac{-\left(-1\right)±\sqrt{9}}{2}
Tambahkan 1 pada 8.
x=\frac{-\left(-1\right)±3}{2}
Ambil punca kuasa dua 9.
x=\frac{1±3}{2}
Nombor bertentangan -1 ialah 1.
x=\frac{4}{2}
Sekarang selesaikan persamaan x=\frac{1±3}{2} apabila ± ialah plus. Tambahkan 1 pada 3.
x=2
Bahagikan 4 dengan 2.
x=-\frac{2}{2}
Sekarang selesaikan persamaan x=\frac{1±3}{2} apabila ± ialah minus. Tolak 3 daripada 1.
x=-1
Bahagikan -2 dengan 2.
x=2 x=-1
Persamaan kini diselesaikan.
x^{2}-x-2=0
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
x^{2}-x-2-\left(-2\right)=-\left(-2\right)
Tambahkan 2 pada kedua-dua belah persamaan.
x^{2}-x=-\left(-2\right)
Menolak -2 daripada dirinya sendiri menjadikannya 0.
x^{2}-x=2
Tolak -2 daripada 0.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Bahagikan -1 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan -\frac{1}{2}. Kemudian tambahkan kuasa dua -\frac{1}{2} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
Kuasa duakan -\frac{1}{2} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
x^{2}-x+\frac{1}{4}=\frac{9}{4}
Tambahkan 2 pada \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
Faktor x^{2}-x+\frac{1}{4}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
Permudahkan.
x=2 x=-1
Tambahkan \frac{1}{2} pada kedua-dua belah persamaan.