Selesaikan untuk x
x=-3
x=9
Graf
Kongsi
Disalin ke papan klip
a+b=-6 ab=-27
Untuk menyelesaikan persamaan, faktorkan x^{2}-6x-27 menggunakan formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
1,-27 3,-9
Oleh kerana ab adalah negatif, a dan b mempunyai tanda yang bertentangan. Oleh kerana a+b adalah negatif, nombor negatif mempunyai nilai mutlak yang lebih besar daripada positif. Senaraikan semua pasangan integer yang memberikan hasil -27.
1-27=-26 3-9=-6
Kira jumlah untuk setiap pasangan.
a=-9 b=3
Penyelesaian ialah pasangan yang memberikan jumlah -6.
\left(x-9\right)\left(x+3\right)
Tulis semula ungkapan \left(x+a\right)\left(x+b\right) yang difaktorkan dengan menggunakan nilai yang diperolehi.
x=9 x=-3
Untuk mencari penyelesaian persamaan, selesaikan x-9=0 dan x+3=0.
a+b=-6 ab=1\left(-27\right)=-27
Untuk menyelesaikan persamaan, faktorkan sebelah kiri mengikut perkumpulan. Pertama sekali, sebelah kiri perlu ditulis semula sebagai x^{2}+ax+bx-27. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
1,-27 3,-9
Oleh kerana ab adalah negatif, a dan b mempunyai tanda yang bertentangan. Oleh kerana a+b adalah negatif, nombor negatif mempunyai nilai mutlak yang lebih besar daripada positif. Senaraikan semua pasangan integer yang memberikan hasil -27.
1-27=-26 3-9=-6
Kira jumlah untuk setiap pasangan.
a=-9 b=3
Penyelesaian ialah pasangan yang memberikan jumlah -6.
\left(x^{2}-9x\right)+\left(3x-27\right)
Tulis semula x^{2}-6x-27 sebagai \left(x^{2}-9x\right)+\left(3x-27\right).
x\left(x-9\right)+3\left(x-9\right)
Faktorkan x dalam kumpulan pertama dan 3 dalam kumpulan kedua.
\left(x-9\right)\left(x+3\right)
Faktorkan sebutan lazim x-9 dengan menggunakan sifat kalis agihan.
x=9 x=-3
Untuk mencari penyelesaian persamaan, selesaikan x-9=0 dan x+3=0.
x^{2}-6x-27=0
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-27\right)}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, -6 dengan b dan -27 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-27\right)}}{2}
Kuasa dua -6.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2}
Darabkan -4 kali -27.
x=\frac{-\left(-6\right)±\sqrt{144}}{2}
Tambahkan 36 pada 108.
x=\frac{-\left(-6\right)±12}{2}
Ambil punca kuasa dua 144.
x=\frac{6±12}{2}
Nombor bertentangan -6 ialah 6.
x=\frac{18}{2}
Sekarang selesaikan persamaan x=\frac{6±12}{2} apabila ± ialah plus. Tambahkan 6 pada 12.
x=9
Bahagikan 18 dengan 2.
x=-\frac{6}{2}
Sekarang selesaikan persamaan x=\frac{6±12}{2} apabila ± ialah minus. Tolak 12 daripada 6.
x=-3
Bahagikan -6 dengan 2.
x=9 x=-3
Persamaan kini diselesaikan.
x^{2}-6x-27=0
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
x^{2}-6x-27-\left(-27\right)=-\left(-27\right)
Tambahkan 27 pada kedua-dua belah persamaan.
x^{2}-6x=-\left(-27\right)
Menolak -27 daripada dirinya sendiri menjadikannya 0.
x^{2}-6x=27
Tolak -27 daripada 0.
x^{2}-6x+\left(-3\right)^{2}=27+\left(-3\right)^{2}
Bahagikan -6 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan -3. Kemudian tambahkan kuasa dua -3 pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}-6x+9=27+9
Kuasa dua -3.
x^{2}-6x+9=36
Tambahkan 27 pada 9.
\left(x-3\right)^{2}=36
Faktor x^{2}-6x+9. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{36}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-3=6 x-3=-6
Permudahkan.
x=9 x=-3
Tambahkan 3 pada kedua-dua belah persamaan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}