Langkau ke kandungan utama
Selesaikan untuk x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

x^{2}-3x-10-8=0
Tolak 8 daripada kedua-dua belah.
x^{2}-3x-18=0
Tolak 8 daripada -10 untuk mendapatkan -18.
a+b=-3 ab=-18
Untuk menyelesaikan persamaan, faktorkan x^{2}-3x-18 menggunakan formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
1,-18 2,-9 3,-6
Oleh kerana ab adalah negatif, a dan b mempunyai tanda yang bertentangan. Oleh kerana a+b adalah negatif, nombor negatif mempunyai nilai mutlak yang lebih besar daripada positif. Senaraikan semua pasangan integer yang memberikan hasil -18.
1-18=-17 2-9=-7 3-6=-3
Kira jumlah untuk setiap pasangan.
a=-6 b=3
Penyelesaian ialah pasangan yang memberikan jumlah -3.
\left(x-6\right)\left(x+3\right)
Tulis semula ungkapan \left(x+a\right)\left(x+b\right) yang difaktorkan dengan menggunakan nilai yang diperolehi.
x=6 x=-3
Untuk mencari penyelesaian persamaan, selesaikan x-6=0 dan x+3=0.
x^{2}-3x-10-8=0
Tolak 8 daripada kedua-dua belah.
x^{2}-3x-18=0
Tolak 8 daripada -10 untuk mendapatkan -18.
a+b=-3 ab=1\left(-18\right)=-18
Untuk menyelesaikan persamaan, faktorkan sebelah kiri mengikut perkumpulan. Pertama sekali, sebelah kiri perlu ditulis semula sebagai x^{2}+ax+bx-18. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
1,-18 2,-9 3,-6
Oleh kerana ab adalah negatif, a dan b mempunyai tanda yang bertentangan. Oleh kerana a+b adalah negatif, nombor negatif mempunyai nilai mutlak yang lebih besar daripada positif. Senaraikan semua pasangan integer yang memberikan hasil -18.
1-18=-17 2-9=-7 3-6=-3
Kira jumlah untuk setiap pasangan.
a=-6 b=3
Penyelesaian ialah pasangan yang memberikan jumlah -3.
\left(x^{2}-6x\right)+\left(3x-18\right)
Tulis semula x^{2}-3x-18 sebagai \left(x^{2}-6x\right)+\left(3x-18\right).
x\left(x-6\right)+3\left(x-6\right)
Faktorkan x dalam kumpulan pertama dan 3 dalam kumpulan kedua.
\left(x-6\right)\left(x+3\right)
Faktorkan sebutan lazim x-6 dengan menggunakan sifat kalis agihan.
x=6 x=-3
Untuk mencari penyelesaian persamaan, selesaikan x-6=0 dan x+3=0.
x^{2}-3x-10=8
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x^{2}-3x-10-8=8-8
Tolak 8 daripada kedua-dua belah persamaan.
x^{2}-3x-10-8=0
Menolak 8 daripada dirinya sendiri menjadikannya 0.
x^{2}-3x-18=0
Tolak 8 daripada -10.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-18\right)}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, -3 dengan b dan -18 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-18\right)}}{2}
Kuasa dua -3.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2}
Darabkan -4 kali -18.
x=\frac{-\left(-3\right)±\sqrt{81}}{2}
Tambahkan 9 pada 72.
x=\frac{-\left(-3\right)±9}{2}
Ambil punca kuasa dua 81.
x=\frac{3±9}{2}
Nombor bertentangan -3 ialah 3.
x=\frac{12}{2}
Sekarang selesaikan persamaan x=\frac{3±9}{2} apabila ± ialah plus. Tambahkan 3 pada 9.
x=6
Bahagikan 12 dengan 2.
x=-\frac{6}{2}
Sekarang selesaikan persamaan x=\frac{3±9}{2} apabila ± ialah minus. Tolak 9 daripada 3.
x=-3
Bahagikan -6 dengan 2.
x=6 x=-3
Persamaan kini diselesaikan.
x^{2}-3x-10=8
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
x^{2}-3x-10-\left(-10\right)=8-\left(-10\right)
Tambahkan 10 pada kedua-dua belah persamaan.
x^{2}-3x=8-\left(-10\right)
Menolak -10 daripada dirinya sendiri menjadikannya 0.
x^{2}-3x=18
Tolak -10 daripada 8.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=18+\left(-\frac{3}{2}\right)^{2}
Bahagikan -3 iaitu pekali bagi sebutan x dengan 2 untuk mendapatkan -\frac{3}{2}. Kemudian tambahkan kuasa dua -\frac{3}{2} pada kedua-dua belah persamaan. Langkah ini menjadikan sebelah kiri persamaan kuasa dua sempurna.
x^{2}-3x+\frac{9}{4}=18+\frac{9}{4}
Kuasa duakan -\frac{3}{2} dengan kuasa duakan kedua-dua pengangka dan penyebut pecahan.
x^{2}-3x+\frac{9}{4}=\frac{81}{4}
Tambahkan 18 pada \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{81}{4}
Faktor x^{2}-3x+\frac{9}{4}. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-\frac{3}{2}=\frac{9}{2} x-\frac{3}{2}=-\frac{9}{2}
Permudahkan.
x=6 x=-3
Tambahkan \frac{3}{2} pada kedua-dua belah persamaan.