Selesaikan untuk x
x=5
Graf
Kongsi
Disalin ke papan klip
a+b=-10 ab=25
Untuk menyelesaikan persamaan, faktorkan x^{2}-10x+25 menggunakan formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
-1,-25 -5,-5
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah negatif, a dan b kedua-duanya negatif. Senaraikan semua pasangan integer yang memberikan hasil 25.
-1-25=-26 -5-5=-10
Kira jumlah untuk setiap pasangan.
a=-5 b=-5
Penyelesaian ialah pasangan yang memberikan jumlah -10.
\left(x-5\right)\left(x-5\right)
Tulis semula ungkapan \left(x+a\right)\left(x+b\right) yang difaktorkan dengan menggunakan nilai yang diperolehi.
\left(x-5\right)^{2}
Tuliskan semula sebagai kuasa dua binomial.
x=5
Untuk mencari penyelesaian persamaan, selesaikan x-5=0.
a+b=-10 ab=1\times 25=25
Untuk menyelesaikan persamaan, faktorkan sebelah kiri mengikut perkumpulan. Pertama sekali, sebelah kiri perlu ditulis semula sebagai x^{2}+ax+bx+25. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
-1,-25 -5,-5
Oleh kerana ab adalah positif, a dan b mempunyai tanda yang sama. Oleh kerana a+b adalah negatif, a dan b kedua-duanya negatif. Senaraikan semua pasangan integer yang memberikan hasil 25.
-1-25=-26 -5-5=-10
Kira jumlah untuk setiap pasangan.
a=-5 b=-5
Penyelesaian ialah pasangan yang memberikan jumlah -10.
\left(x^{2}-5x\right)+\left(-5x+25\right)
Tulis semula x^{2}-10x+25 sebagai \left(x^{2}-5x\right)+\left(-5x+25\right).
x\left(x-5\right)-5\left(x-5\right)
Faktorkan x dalam kumpulan pertama dan -5 dalam kumpulan kedua.
\left(x-5\right)\left(x-5\right)
Faktorkan sebutan lazim x-5 dengan menggunakan sifat kalis agihan.
\left(x-5\right)^{2}
Tuliskan semula sebagai kuasa dua binomial.
x=5
Untuk mencari penyelesaian persamaan, selesaikan x-5=0.
x^{2}-10x+25=0
Semua persamaan dalam bentuk ax^{2}+bx+c=0 boleh diselesaikan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula kuadratik memberi dua penyelesaian, satu apabila ± adalah penambahan dan satu lagi apabila ia adalah penolakan.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
Persamaan ini dalam bentuk piawai: ax^{2}+bx+c=0. Gantikan 1 dengan a, -10 dengan b dan 25 dengan c dalam formula kuadratik, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
Kuasa dua -10.
x=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
Darabkan -4 kali 25.
x=\frac{-\left(-10\right)±\sqrt{0}}{2}
Tambahkan 100 pada -100.
x=-\frac{-10}{2}
Ambil punca kuasa dua 0.
x=\frac{10}{2}
Nombor bertentangan -10 ialah 10.
x=5
Bahagikan 10 dengan 2.
x^{2}-10x+25=0
Persamaan kuadratik seperti ini boleh diselesaikan dengan melengkapkan kuasa dua. Untuk melengkapkan kuasa dua, persamaan mestilah pada mulanya dalam bentuk x^{2}+bx=c.
\left(x-5\right)^{2}=0
Faktor x^{2}-10x+25. Umumnya, apabila x^{2}+bx+c adalah kuasa dua sempurna, ia sentiasa boleh difaktorkan sebagai \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{0}
Ambil punca kuasa dua kedua-dua belah persamaan.
x-5=0 x-5=0
Permudahkan.
x=5 x=5
Tambahkan 5 pada kedua-dua belah persamaan.
x=5
Persamaan kini diselesaikan. Penyelesaian adalah sama.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}