Langkau ke kandungan utama
Selesaikan untuk x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

\left(x^{2}-6x+9\right)\left(10-17x\right)^{2}=0
Gunakan teorem binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} untuk mengembangkan \left(x-3\right)^{2}.
\left(x^{2}-6x+9\right)\left(100-340x+289x^{2}\right)=0
Gunakan teorem binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} untuk mengembangkan \left(10-17x\right)^{2}.
4741x^{2}-2074x^{3}+289x^{4}-3660x+900=0
Gunakan sifat kalis agihan untuk mendarab x^{2}-6x+9 dengan 100-340x+289x^{2} dan gabungkan sebutan yang serupa.
289x^{4}-2074x^{3}+4741x^{2}-3660x+900=0
Susun semula persamaan untuk meletakkannya dalam bentuk piawai. Letakkan sebutan mengikut tertib daripada kuasa tertinggi hingga terendah.
±\frac{900}{289},±\frac{900}{17},±900,±\frac{450}{289},±\frac{450}{17},±450,±\frac{300}{289},±\frac{300}{17},±300,±\frac{225}{289},±\frac{225}{17},±225,±\frac{180}{289},±\frac{180}{17},±180,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{90}{289},±\frac{90}{17},±90,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{45}{289},±\frac{45}{17},±45,±\frac{36}{289},±\frac{36}{17},±36,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{18}{289},±\frac{18}{17},±18,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{9}{289},±\frac{9}{17},±9,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
Dengan Teorem Punca Nisbah, semua punca nisbah polinomial adalah dalam bentuk \frac{p}{q}, apabila p membahagikan sebutan malar 900 dan q membahagikan pekali pelopor 289. Senaraikan semua calon \frac{p}{q}.
x=3
Cari satu akar tersebut dengan mencuba semua nilai integer, bermula daripadayang terkecil mengikut nilai mutlak. Sekiranya tiada akar integer ditemui, cuba pecahan.
289x^{3}-1207x^{2}+1120x-300=0
Dengan teorem Faktor, x-k merupakan faktor polinomial bagi setiap punca k. Bahagikan 289x^{4}-2074x^{3}+4741x^{2}-3660x+900 dengan x-3 untuk mendapatkan 289x^{3}-1207x^{2}+1120x-300. Selesaikan persamaan di mana hasil bersamaan dengan 0.
±\frac{300}{289},±\frac{300}{17},±300,±\frac{150}{289},±\frac{150}{17},±150,±\frac{100}{289},±\frac{100}{17},±100,±\frac{75}{289},±\frac{75}{17},±75,±\frac{60}{289},±\frac{60}{17},±60,±\frac{50}{289},±\frac{50}{17},±50,±\frac{30}{289},±\frac{30}{17},±30,±\frac{25}{289},±\frac{25}{17},±25,±\frac{20}{289},±\frac{20}{17},±20,±\frac{15}{289},±\frac{15}{17},±15,±\frac{12}{289},±\frac{12}{17},±12,±\frac{10}{289},±\frac{10}{17},±10,±\frac{6}{289},±\frac{6}{17},±6,±\frac{5}{289},±\frac{5}{17},±5,±\frac{4}{289},±\frac{4}{17},±4,±\frac{3}{289},±\frac{3}{17},±3,±\frac{2}{289},±\frac{2}{17},±2,±\frac{1}{289},±\frac{1}{17},±1
Dengan Teorem Punca Nisbah, semua punca nisbah polinomial adalah dalam bentuk \frac{p}{q}, apabila p membahagikan sebutan malar -300 dan q membahagikan pekali pelopor 289. Senaraikan semua calon \frac{p}{q}.
x=3
Cari satu akar tersebut dengan mencuba semua nilai integer, bermula daripadayang terkecil mengikut nilai mutlak. Sekiranya tiada akar integer ditemui, cuba pecahan.
289x^{2}-340x+100=0
Dengan teorem Faktor, x-k merupakan faktor polinomial bagi setiap punca k. Bahagikan 289x^{3}-1207x^{2}+1120x-300 dengan x-3 untuk mendapatkan 289x^{2}-340x+100. Selesaikan persamaan di mana hasil bersamaan dengan 0.
x=\frac{-\left(-340\right)±\sqrt{\left(-340\right)^{2}-4\times 289\times 100}}{2\times 289}
Semua persamaan bentuk ax^{2}+bx+c=0 boleh diselesaikan dengan menggunakan formula kuadratik: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Gantikan 289 untuk a, -340 untuk b dan 100 untuk c dalam formula kuadratik.
x=\frac{340±0}{578}
Lakukan pengiraan.
x=\frac{10}{17}
Penyelesaian adalah sama.
x=3 x=\frac{10}{17}
Senaraikan semua penyelesaian yang ditemui.