Langkau ke kandungan utama
Selesaikan untuk x
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

\left(\sqrt{3x^{2}+7x-4}\right)^{2}=\left(-x\right)^{2}
Kuasa duakan kedua-dua belah persamaan.
3x^{2}+7x-4=\left(-x\right)^{2}
Kira \sqrt{3x^{2}+7x-4} dikuasakan 2 dan dapatkan 3x^{2}+7x-4.
3x^{2}+7x-4=x^{2}
Kira -x dikuasakan 2 dan dapatkan x^{2}.
3x^{2}+7x-4-x^{2}=0
Tolak x^{2} daripada kedua-dua belah.
2x^{2}+7x-4=0
Gabungkan 3x^{2} dan -x^{2} untuk mendapatkan 2x^{2}.
a+b=7 ab=2\left(-4\right)=-8
Untuk menyelesaikan persamaan, faktorkan sebelah kiri mengikut perkumpulan. Pertama sekali, sebelah kiri perlu ditulis semula sebagai 2x^{2}+ax+bx-4. Untuk mencari a dan b, sediakan sistem untuk diselesaikan.
-1,8 -2,4
Oleh kerana ab adalah negatif, a dan b mempunyai tanda yang bertentangan. Oleh kerana a+b adalah positif, nombor positif mempunyai nilai mutlak yang lebih besar daripada negatif. Senaraikan semua pasangan integer yang memberikan hasil -8.
-1+8=7 -2+4=2
Kira jumlah untuk setiap pasangan.
a=-1 b=8
Penyelesaian ialah pasangan yang memberikan jumlah 7.
\left(2x^{2}-x\right)+\left(8x-4\right)
Tulis semula 2x^{2}+7x-4 sebagai \left(2x^{2}-x\right)+\left(8x-4\right).
x\left(2x-1\right)+4\left(2x-1\right)
Faktorkan x dalam kumpulan pertama dan 4 dalam kumpulan kedua.
\left(2x-1\right)\left(x+4\right)
Faktorkan sebutan lazim 2x-1 dengan menggunakan sifat kalis agihan.
x=\frac{1}{2} x=-4
Untuk mencari penyelesaian persamaan, selesaikan 2x-1=0 dan x+4=0.
\sqrt{3\times \left(\frac{1}{2}\right)^{2}+7\times \frac{1}{2}-4}=-\frac{1}{2}
Gantikan \frac{1}{2} dengan x dalam persamaan \sqrt{3x^{2}+7x-4}=-x.
\frac{1}{2}=-\frac{1}{2}
Permudahkan. Nilai x=\frac{1}{2} tidak memuaskan persamaan kerana sisi kiri dan kanan mempunyai tanda yang bertentangan.
\sqrt{3\left(-4\right)^{2}+7\left(-4\right)-4}=-\left(-4\right)
Gantikan -4 dengan x dalam persamaan \sqrt{3x^{2}+7x-4}=-x.
4=4
Permudahkan. Nilai x=-4 memuaskan persamaan.
x=-4
\sqrt{3x^{2}+7x-4}=-x persamaan mempunyai penyelesaian yang unik.