Langkau ke kandungan utama
Bezakan w.r.t. x_2
Tick mark Image
Nilaikan
Tick mark Image

Masalah Sama dari Carian Web

Kongsi

\frac{\mathrm{d}}{\mathrm{d}x_{2}}(\sin(x_{2}))=\left(\lim_{h\to 0}\frac{\sin(x_{2}+h)-\sin(x_{2})}{h}\right)
Bagi fungsi f\left(x\right), terbitannya adalah had bagi \frac{f\left(x+h\right)-f\left(x\right)}{h} apabila h pergi ke 0, jika had tersebut wujud.
\lim_{h\to 0}\frac{\sin(x_{2}+h)-\sin(x_{2})}{h}
Gunakan Formula Hasil Tambah untuk Sinus.
\lim_{h\to 0}\frac{\sin(x_{2})\left(\cos(h)-1\right)+\cos(x_{2})\sin(h)}{h}
Faktorkan \sin(x_{2}).
\left(\lim_{h\to 0}\sin(x_{2})\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(x_{2})\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Tulis semula had.
\sin(x_{2})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x_{2})\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Gunakan fakta bahawa x_{2} ialah pemalar apabila mengira had semasa h pergi ke 0.
\sin(x_{2})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x_{2})
Had \lim_{x_{2}\to 0}\frac{\sin(x_{2})}{x_{2}} ialah 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Untuk menilaikan had \lim_{h\to 0}\frac{\cos(h)-1}{h}, mula-mula darabkan pengangka dan penyebut dengan \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Darabkan \cos(h)+1 kali \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Gunakan Identiti Phythagoras.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Tulis semula had.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Had \lim_{x_{2}\to 0}\frac{\sin(x_{2})}{x_{2}} ialah 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Gunakan fakta bahawa \frac{\sin(h)}{\cos(h)+1} adalah selanjar pada 0.
\cos(x_{2})
Gantikan nilai 0 ke dalam ungkapan \sin(x_{2})\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x_{2}).