Selesaikan untuk y, x
x=-1
y=4
Graf
Kongsi
Disalin ke papan klip
y+x=3
Pertimbangkan persamaan pertama. Tambahkan x pada kedua-dua belah.
y+x=3,y-2x=6
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
y+x=3
Pilih salah satu daripada persamaan dan selesaikannya untuk y dengan mengasingkan y di sebelah kiri tanda sama dengan.
y=-x+3
Tolak x daripada kedua-dua belah persamaan.
-x+3-2x=6
Gantikan -x+3 dengan y dalam persamaan lain, y-2x=6.
-3x+3=6
Tambahkan -x pada -2x.
-3x=3
Tolak 3 daripada kedua-dua belah persamaan.
x=-1
Bahagikan kedua-dua belah dengan -3.
y=-\left(-1\right)+3
Gantikan -1 dengan x dalam y=-x+3. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk y.
y=1+3
Darabkan -1 kali -1.
y=4
Tambahkan 3 pada 1.
y=4,x=-1
Sistem kini diselesaikan.
y+x=3
Pertimbangkan persamaan pertama. Tambahkan x pada kedua-dua belah.
y+x=3,y-2x=6
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}1&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 3+\frac{1}{3}\times 6\\\frac{1}{3}\times 3-\frac{1}{3}\times 6\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
Lakukan aritmetik.
y=4,x=-1
Ekstrak unsur matriks y dan x.
y+x=3
Pertimbangkan persamaan pertama. Tambahkan x pada kedua-dua belah.
y+x=3,y-2x=6
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
y-y+x+2x=3-6
Tolak y-2x=6 daripada y+x=3 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
x+2x=3-6
Tambahkan y pada -y. Seubtan y dan -y saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
3x=3-6
Tambahkan x pada 2x.
3x=-3
Tambahkan 3 pada -6.
x=-1
Bahagikan kedua-dua belah dengan 3.
y-2\left(-1\right)=6
Gantikan -1 dengan x dalam y-2x=6. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk y.
y+2=6
Darabkan -2 kali -1.
y=4
Tolak 2 daripada kedua-dua belah persamaan.
y=4,x=-1
Sistem kini diselesaikan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}