Selesaikan untuk y, x
x=-4
y=-1
Graf
Kongsi
Disalin ke papan klip
y-2x=7
Pertimbangkan persamaan pertama. Tolak 2x daripada kedua-dua belah.
2y-x=2
Pertimbangkan persamaan kedua. Tolak x daripada kedua-dua belah.
y-2x=7,2y-x=2
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
y-2x=7
Pilih salah satu daripada persamaan dan selesaikannya untuk y dengan mengasingkan y di sebelah kiri tanda sama dengan.
y=2x+7
Tambahkan 2x pada kedua-dua belah persamaan.
2\left(2x+7\right)-x=2
Gantikan 2x+7 dengan y dalam persamaan lain, 2y-x=2.
4x+14-x=2
Darabkan 2 kali 2x+7.
3x+14=2
Tambahkan 4x pada -x.
3x=-12
Tolak 14 daripada kedua-dua belah persamaan.
x=-4
Bahagikan kedua-dua belah dengan 3.
y=2\left(-4\right)+7
Gantikan -4 dengan x dalam y=2x+7. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk y.
y=-8+7
Darabkan 2 kali -4.
y=-1
Tambahkan 7 pada -8.
y=-1,x=-4
Sistem kini diselesaikan.
y-2x=7
Pertimbangkan persamaan pertama. Tolak 2x daripada kedua-dua belah.
2y-x=2
Pertimbangkan persamaan kedua. Tolak x daripada kedua-dua belah.
y-2x=7,2y-x=2
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7\\2\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\2\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}1&-2\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\2\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&-1\end{matrix}\right))\left(\begin{matrix}7\\2\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-2\times 2\right)}&-\frac{-2}{-1-\left(-2\times 2\right)}\\-\frac{2}{-1-\left(-2\times 2\right)}&\frac{1}{-1-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}7\\2\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}7\\2\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 7+\frac{2}{3}\times 2\\-\frac{2}{3}\times 7+\frac{1}{3}\times 2\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\-4\end{matrix}\right)
Lakukan aritmetik.
y=-1,x=-4
Ekstrak unsur matriks y dan x.
y-2x=7
Pertimbangkan persamaan pertama. Tolak 2x daripada kedua-dua belah.
2y-x=2
Pertimbangkan persamaan kedua. Tolak x daripada kedua-dua belah.
y-2x=7,2y-x=2
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
2y+2\left(-2\right)x=2\times 7,2y-x=2
Untuk menjadikan y dan 2y sama, darabkan semua sebutan pada setiap belah persamaan pertama dengan 2 dan semua sebutan pada setiap belah yang kedua dengan 1.
2y-4x=14,2y-x=2
Permudahkan.
2y-2y-4x+x=14-2
Tolak 2y-x=2 daripada 2y-4x=14 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
-4x+x=14-2
Tambahkan 2y pada -2y. Seubtan 2y dan -2y saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
-3x=14-2
Tambahkan -4x pada x.
-3x=12
Tambahkan 14 pada -2.
x=-4
Bahagikan kedua-dua belah dengan -3.
2y-\left(-4\right)=2
Gantikan -4 dengan x dalam 2y-x=2. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk y.
2y=-2
Tolak 4 daripada kedua-dua belah persamaan.
y=-1
Bahagikan kedua-dua belah dengan 2.
y=-1,x=-4
Sistem kini diselesaikan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}