Langkau ke kandungan utama
Selesaikan untuk x, y
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

x-3y=3,2x+3y=6
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
x-3y=3
Pilih salah satu daripada persamaan dan selesaikannya untuk x dengan mengasingkan x di sebelah kiri tanda sama dengan.
x=3y+3
Tambahkan 3y pada kedua-dua belah persamaan.
2\left(3y+3\right)+3y=6
Gantikan 3+3y dengan x dalam persamaan lain, 2x+3y=6.
6y+6+3y=6
Darabkan 2 kali 3+3y.
9y+6=6
Tambahkan 6y pada 3y.
9y=0
Tolak 6 daripada kedua-dua belah persamaan.
y=0
Bahagikan kedua-dua belah dengan 9.
x=3
Gantikan 0 dengan y dalam x=3y+3. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=3,y=0
Sistem kini diselesaikan.
x-3y=3,2x+3y=6
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}1&-3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}1&-3\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&3\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\times 2\right)}&-\frac{-3}{3-\left(-3\times 2\right)}\\-\frac{2}{3-\left(-3\times 2\right)}&\frac{1}{3-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\-\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 3+\frac{1}{3}\times 6\\-\frac{2}{9}\times 3+\frac{1}{9}\times 6\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\0\end{matrix}\right)
Lakukan aritmetik.
x=3,y=0
Ekstrak unsur matriks x dan y.
x-3y=3,2x+3y=6
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
2x+2\left(-3\right)y=2\times 3,2x+3y=6
Untuk menjadikan x dan 2x sama, darabkan semua sebutan pada setiap belah persamaan pertama dengan 2 dan semua sebutan pada setiap belah yang kedua dengan 1.
2x-6y=6,2x+3y=6
Permudahkan.
2x-2x-6y-3y=6-6
Tolak 2x+3y=6 daripada 2x-6y=6 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
-6y-3y=6-6
Tambahkan 2x pada -2x. Seubtan 2x dan -2x saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
-9y=6-6
Tambahkan -6y pada -3y.
-9y=0
Tambahkan 6 pada -6.
y=0
Bahagikan kedua-dua belah dengan -9.
2x=6
Gantikan 0 dengan y dalam 2x+3y=6. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=3
Bahagikan kedua-dua belah dengan 2.
x=3,y=0
Sistem kini diselesaikan.