Langkau ke kandungan utama
Selesaikan untuk x, y
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

x+y=3,x-2y=-3
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
x+y=3
Pilih salah satu daripada persamaan dan selesaikannya untuk x dengan mengasingkan x di sebelah kiri tanda sama dengan.
x=-y+3
Tolak y daripada kedua-dua belah persamaan.
-y+3-2y=-3
Gantikan -y+3 dengan x dalam persamaan lain, x-2y=-3.
-3y+3=-3
Tambahkan -y pada -2y.
-3y=-6
Tolak 3 daripada kedua-dua belah persamaan.
y=2
Bahagikan kedua-dua belah dengan -3.
x=-2+3
Gantikan 2 dengan y dalam x=-y+3. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=1
Tambahkan 3 pada -2.
x=1,y=2
Sistem kini diselesaikan.
x+y=3,x-2y=-3
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-3\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}3\\-3\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}1&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}3\\-3\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}3\\-3\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}3\\-3\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\-3\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 3+\frac{1}{3}\left(-3\right)\\\frac{1}{3}\times 3-\frac{1}{3}\left(-3\right)\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
Lakukan aritmetik.
x=1,y=2
Ekstrak unsur matriks x dan y.
x+y=3,x-2y=-3
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
x-x+y+2y=3+3
Tolak x-2y=-3 daripada x+y=3 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
y+2y=3+3
Tambahkan x pada -x. Seubtan x dan -x saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
3y=3+3
Tambahkan y pada 2y.
3y=6
Tambahkan 3 pada 3.
y=2
Bahagikan kedua-dua belah dengan 3.
x-2\times 2=-3
Gantikan 2 dengan y dalam x-2y=-3. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x-4=-3
Darabkan -2 kali 2.
x=1
Tambahkan 4 pada kedua-dua belah persamaan.
x=1,y=2
Sistem kini diselesaikan.