Langkau ke kandungan utama
Selesaikan untuk x, y
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

x+y=1,2x-y=3
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
x+y=1
Pilih salah satu daripada persamaan dan selesaikannya untuk x dengan mengasingkan x di sebelah kiri tanda sama dengan.
x=-y+1
Tolak y daripada kedua-dua belah persamaan.
2\left(-y+1\right)-y=3
Gantikan -y+1 dengan x dalam persamaan lain, 2x-y=3.
-2y+2-y=3
Darabkan 2 kali -y+1.
-3y+2=3
Tambahkan -2y pada -y.
-3y=1
Tolak 2 daripada kedua-dua belah persamaan.
y=-\frac{1}{3}
Bahagikan kedua-dua belah dengan -3.
x=-\left(-\frac{1}{3}\right)+1
Gantikan -\frac{1}{3} dengan y dalam x=-y+1. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=\frac{1}{3}+1
Darabkan -1 kali -\frac{1}{3}.
x=\frac{4}{3}
Tambahkan 1 pada \frac{1}{3}.
x=\frac{4}{3},y=-\frac{1}{3}
Sistem kini diselesaikan.
x+y=1,2x-y=3
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}1&1\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-2}&-\frac{1}{-1-2}\\-\frac{2}{-1-2}&\frac{1}{-1-2}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}+\frac{1}{3}\times 3\\\frac{2}{3}-\frac{1}{3}\times 3\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\\-\frac{1}{3}\end{matrix}\right)
Lakukan aritmetik.
x=\frac{4}{3},y=-\frac{1}{3}
Ekstrak unsur matriks x dan y.
x+y=1,2x-y=3
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
2x+2y=2,2x-y=3
Untuk menjadikan x dan 2x sama, darabkan semua sebutan pada setiap belah persamaan pertama dengan 2 dan semua sebutan pada setiap belah yang kedua dengan 1.
2x-2x+2y+y=2-3
Tolak 2x-y=3 daripada 2x+2y=2 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
2y+y=2-3
Tambahkan 2x pada -2x. Seubtan 2x dan -2x saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
3y=2-3
Tambahkan 2y pada y.
3y=-1
Tambahkan 2 pada -3.
y=-\frac{1}{3}
Bahagikan kedua-dua belah dengan 3.
2x-\left(-\frac{1}{3}\right)=3
Gantikan -\frac{1}{3} dengan y dalam 2x-y=3. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
2x=\frac{8}{3}
Tolak \frac{1}{3} daripada kedua-dua belah persamaan.
x=\frac{4}{3}
Bahagikan kedua-dua belah dengan 2.
x=\frac{4}{3},y=-\frac{1}{3}
Sistem kini diselesaikan.