Selesaikan untuk x, y
x=1
y=1
Graf
Kongsi
Disalin ke papan klip
2x+3y=5,4x+3y=7
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
2x+3y=5
Pilih salah satu daripada persamaan dan selesaikannya untuk x dengan mengasingkan x di sebelah kiri tanda sama dengan.
2x=-3y+5
Tolak 3y daripada kedua-dua belah persamaan.
x=\frac{1}{2}\left(-3y+5\right)
Bahagikan kedua-dua belah dengan 2.
x=-\frac{3}{2}y+\frac{5}{2}
Darabkan \frac{1}{2} kali -3y+5.
4\left(-\frac{3}{2}y+\frac{5}{2}\right)+3y=7
Gantikan \frac{-3y+5}{2} dengan x dalam persamaan lain, 4x+3y=7.
-6y+10+3y=7
Darabkan 4 kali \frac{-3y+5}{2}.
-3y+10=7
Tambahkan -6y pada 3y.
-3y=-3
Tolak 10 daripada kedua-dua belah persamaan.
y=1
Bahagikan kedua-dua belah dengan -3.
x=\frac{-3+5}{2}
Gantikan 1 dengan y dalam x=-\frac{3}{2}y+\frac{5}{2}. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=1
Tambahkan \frac{5}{2} pada -\frac{3}{2} dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
x=1,y=1
Sistem kini diselesaikan.
2x+3y=5,4x+3y=7
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}2&3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}2&3\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}2&3\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\times 4}&-\frac{3}{2\times 3-3\times 4}\\-\frac{4}{2\times 3-3\times 4}&\frac{2}{2\times 3-3\times 4}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{2}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 5+\frac{1}{2}\times 7\\\frac{2}{3}\times 5-\frac{1}{3}\times 7\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Lakukan aritmetik.
x=1,y=1
Ekstrak unsur matriks x dan y.
2x+3y=5,4x+3y=7
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
2x-4x+3y-3y=5-7
Tolak 4x+3y=7 daripada 2x+3y=5 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
2x-4x=5-7
Tambahkan 3y pada -3y. Seubtan 3y dan -3y saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
-2x=5-7
Tambahkan 2x pada -4x.
-2x=-2
Tambahkan 5 pada -7.
x=1
Bahagikan kedua-dua belah dengan -2.
4+3y=7
Gantikan 1 dengan x dalam 4x+3y=7. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk y.
3y=3
Tolak 4 daripada kedua-dua belah persamaan.
y=1
Bahagikan kedua-dua belah dengan 3.
x=1,y=1
Sistem kini diselesaikan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}