Selesaikan untuk θ_1, θ_2, θ_3
\theta _{1}=ArcCosI(\left(-1\right)CosI(\theta _{2})+\left(-1\right)CosI(\theta _{3})+3)+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }\theta _{2}\in \begin{bmatrix}\left(-\frac{1}{2}\right)\pi +2n_{45}\pi +arcSin(\left(-1\right)CosI(\theta _{3})+2),\left(-1\right)arcSin(\left(-1\right)CosI(\theta _{3})+2)+2n_{45}\pi +\frac{1}{2}\pi \end{bmatrix}\text{, }n_{45}\in \mathrm{Z}\text{, }\theta _{3}=2n_{42}\pi \text{, }n_{42}\in \mathrm{Z}\text{; }\theta _{1}=\left(-1\right)ArcCosI(\left(-1\right)CosI(\theta _{2})+\left(-1\right)CosI(\theta _{3})+3)+2n_{2}\pi \text{, }n_{2}\in \mathrm{Z}\text{, }\theta _{2}\in \begin{bmatrix}\left(-\frac{1}{2}\right)\pi +2n_{45}\pi +arcSin(\left(-1\right)CosI(\theta _{3})+2),\left(-1\right)arcSin(\left(-1\right)CosI(\theta _{3})+2)+2n_{45}\pi +\frac{1}{2}\pi \end{bmatrix}\text{, }n_{45}\in \mathrm{Z}\text{, }\theta _{3}=2n_{42}\pi \text{, }n_{42}\in \mathrm{Z}
Kongsi
Disalin ke papan klip
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}