Selesaikan untuk x, y, z, a, b (complex solution)
x=\frac{2\pi n_{1}i}{\ln(2)}+\log_{2}\left(3\right)
n_{1}\in \mathrm{Z}
y=\frac{\pi n_{2}i}{\ln(2)}+\frac{\log_{2}\left(5\right)}{2}
n_{2}\in \mathrm{Z}
z\in \cup n_{1},2^{\frac{2\pi n_{1}i}{\ln(2)}-\frac{2\pi n_{2}i}{\ln(2)}+\log_{2}\left(\frac{3}{5}\right)}
n_{2}\in \mathrm{Z}
a\in \cup n_{2},\cup n_{1},\cup n_{2},\cup n_{1},2^{\frac{2\pi n_{1}i}{\ln(2)}-\frac{2\pi n_{2}i}{\ln(2)}+\log_{2}\left(\frac{3}{5}\right)}
z=2^{\frac{2\pi n_{1}i}{\ln(2)}-\frac{2\pi n_{2}i}{\ln(2)}+\frac{\ln(\frac{3}{5})}{\ln(2)}}
n_{2}\in \mathrm{Z}
b\in \cup n_{2},\cup n_{2},\cup n_{1},\cup n_{2},\cup n_{2},\cup n_{1},\cup n_{2},\cup n_{1},2^{\frac{2\pi n_{1}i}{\ln(2)}-\frac{2\pi n_{2}i}{\ln(2)}+\log_{2}\left(\frac{3}{5}\right)}
a=2^{\frac{2\pi n_{1}i}{\ln(2)}-\frac{2\pi n_{2}i}{\ln(2)}+\frac{\ln(\frac{3}{5})}{\ln(2)}}\text{ and }z=2^{\frac{2\pi n_{1}i}{\ln(2)}-\frac{2\pi n_{2}i}{\ln(2)}+\frac{\ln(\frac{3}{5})}{\ln(2)}}
\exists n_{2}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=2^{\frac{2\pi n_{1}i}{\ln(2)}-\frac{2\pi n_{2}i}{\ln(2)}+\frac{\ln(\frac{3}{5})}{\ln(2)}}\right)
n_{2}\in \mathrm{Z}
Selesaikan untuk x, y, z, a, b
b=2^{\log_{2}\left(\frac{3}{5}\right)}\approx 0.6
Kongsi
Disalin ke papan klip
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}