Selesaikan untuk x, y, z (complex solution)
\left\{\begin{matrix}x=\frac{i\sqrt{d}\sqrt{d-2m}-2m}{m}\text{, }y=\frac{d}{m}\text{, }z=d\text{; }x=\frac{-i\sqrt{d}\sqrt{d-2m}-2m}{m}\text{, }y=\frac{d}{m}\text{, }z=d\text{, }&m\neq 0\text{ and }c=d\text{ and }a=d\text{ and }b=d\\x\in \mathrm{C}\text{, }y=\sqrt{-\left(x+1\right)\left(x+3\right)}+1\text{, }z=0\text{; }x\in \mathrm{C}\text{, }y=-\sqrt{-\left(x+1\right)\left(x+3\right)}+1\text{, }z=0\text{, }&a=0\text{ and }m=0\text{ and }b=0\text{ and }c=0\text{ and }d=0\end{matrix}\right.
Selesaikan untuk x, y, z
\left\{\begin{matrix}x=-\frac{\sqrt{c\left(2m-c\right)}+2|m|}{|m|}\text{, }y=\frac{c}{m}\text{, }z=c\text{; }x=\frac{\sqrt{c\left(2m-c\right)}-2|m|}{|m|}\text{, }y=\frac{c}{m}\text{, }z=c\text{, }&\left(c<0\text{ or }m\geq \frac{c}{2}\right)\text{ and }\left(m\geq 0\text{ or }m\geq \frac{c}{2}\text{ or }c<0\right)\text{ and }\left(c>0\text{ or }m\leq \frac{c}{2}\right)\text{ and }c\neq 0\text{ and }d=c\text{ and }a=c\text{ and }b=c\\x\in \begin{bmatrix}-3,-1\end{bmatrix}\text{, }y=\sqrt{-\left(x+1\right)\left(x+3\right)}+1\text{, }z=0\text{; }x\in \begin{bmatrix}-3,-1\end{bmatrix}\text{, }y=-\sqrt{-\left(x+1\right)\left(x+3\right)}+1\text{, }z=0\text{, }&a=0\text{ and }m=0\text{ and }b=0\text{ and }c=0\text{ and }d=0\end{matrix}\right.
Kongsi
Disalin ke papan klip
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}