Selesaikan untuk x, y
x = \frac{75}{2} = 37\frac{1}{2} = 37.5
y = \frac{169}{2} = 84\frac{1}{2} = 84.5
Graf
Kongsi
Disalin ke papan klip
y-22-\left(x-11\right)=36
Pertimbangkan persamaan kedua. Darabkan kedua-dua belah persamaan dengan 2.
y-22-x+11=36
Untuk mencari yang bertentangan dengan x-11, cari yang bertentangan dengan setiap sebutan.
y-11-x=36
Tambahkan -22 dan 11 untuk dapatkan -11.
y-x=36+11
Tambahkan 11 pada kedua-dua belah.
y-x=47
Tambahkan 36 dan 11 untuk dapatkan 47.
x+y=122,-x+y=47
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
x+y=122
Pilih salah satu daripada persamaan dan selesaikannya untuk x dengan mengasingkan x di sebelah kiri tanda sama dengan.
x=-y+122
Tolak y daripada kedua-dua belah persamaan.
-\left(-y+122\right)+y=47
Gantikan -y+122 dengan x dalam persamaan lain, -x+y=47.
y-122+y=47
Darabkan -1 kali -y+122.
2y-122=47
Tambahkan y pada y.
2y=169
Tambahkan 122 pada kedua-dua belah persamaan.
y=\frac{169}{2}
Bahagikan kedua-dua belah dengan 2.
x=-\frac{169}{2}+122
Gantikan \frac{169}{2} dengan y dalam x=-y+122. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=\frac{75}{2}
Tambahkan 122 pada -\frac{169}{2}.
x=\frac{75}{2},y=\frac{169}{2}
Sistem kini diselesaikan.
y-22-\left(x-11\right)=36
Pertimbangkan persamaan kedua. Darabkan kedua-dua belah persamaan dengan 2.
y-22-x+11=36
Untuk mencari yang bertentangan dengan x-11, cari yang bertentangan dengan setiap sebutan.
y-11-x=36
Tambahkan -22 dan 11 untuk dapatkan -11.
y-x=36+11
Tambahkan 11 pada kedua-dua belah.
y-x=47
Tambahkan 36 dan 11 untuk dapatkan 47.
x+y=122,-x+y=47
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}122\\47\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}122\\47\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}1&1\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}122\\47\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}122\\47\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{1}{1-\left(-1\right)}\\-\frac{-1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}122\\47\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}122\\47\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 122-\frac{1}{2}\times 47\\\frac{1}{2}\times 122+\frac{1}{2}\times 47\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{75}{2}\\\frac{169}{2}\end{matrix}\right)
Lakukan aritmetik.
x=\frac{75}{2},y=\frac{169}{2}
Ekstrak unsur matriks x dan y.
y-22-\left(x-11\right)=36
Pertimbangkan persamaan kedua. Darabkan kedua-dua belah persamaan dengan 2.
y-22-x+11=36
Untuk mencari yang bertentangan dengan x-11, cari yang bertentangan dengan setiap sebutan.
y-11-x=36
Tambahkan -22 dan 11 untuk dapatkan -11.
y-x=36+11
Tambahkan 11 pada kedua-dua belah.
y-x=47
Tambahkan 36 dan 11 untuk dapatkan 47.
x+y=122,-x+y=47
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
x+x+y-y=122-47
Tolak -x+y=47 daripada x+y=122 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
x+x=122-47
Tambahkan y pada -y. Seubtan y dan -y saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
2x=122-47
Tambahkan x pada x.
2x=75
Tambahkan 122 pada -47.
x=\frac{75}{2}
Bahagikan kedua-dua belah dengan 2.
-\frac{75}{2}+y=47
Gantikan \frac{75}{2} dengan x dalam -x+y=47. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk y.
y=\frac{169}{2}
Tambahkan \frac{75}{2} pada kedua-dua belah persamaan.
x=\frac{75}{2},y=\frac{169}{2}
Sistem kini diselesaikan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}