Selesaikan untuk x, y
x=-5
y=2
Graf
Kongsi
Disalin ke papan klip
3x+y=-13,x+y=-3
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
3x+y=-13
Pilih salah satu daripada persamaan dan selesaikannya untuk x dengan mengasingkan x di sebelah kiri tanda sama dengan.
3x=-y-13
Tolak y daripada kedua-dua belah persamaan.
x=\frac{1}{3}\left(-y-13\right)
Bahagikan kedua-dua belah dengan 3.
x=-\frac{1}{3}y-\frac{13}{3}
Darabkan \frac{1}{3} kali -y-13.
-\frac{1}{3}y-\frac{13}{3}+y=-3
Gantikan \frac{-y-13}{3} dengan x dalam persamaan lain, x+y=-3.
\frac{2}{3}y-\frac{13}{3}=-3
Tambahkan -\frac{y}{3} pada y.
\frac{2}{3}y=\frac{4}{3}
Tambahkan \frac{13}{3} pada kedua-dua belah persamaan.
y=2
Bahagikan kedua-dua belah persamaan dengan \frac{2}{3} yang bersamaan dengan mendarab kedua-dua belah dengan salingan pecahan.
x=-\frac{1}{3}\times 2-\frac{13}{3}
Gantikan 2 dengan y dalam x=-\frac{1}{3}y-\frac{13}{3}. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=\frac{-2-13}{3}
Darabkan -\frac{1}{3} kali 2.
x=-5
Tambahkan -\frac{13}{3} pada -\frac{2}{3} dengan mencari satu penyebut sepunya dan menambah pengangka. Kemudian kurangkan pecahan kepada sebutan terendah yang mungkin.
x=-5,y=2
Sistem kini diselesaikan.
3x+y=-13,x+y=-3
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-13\\-3\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}3&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}-13\\-3\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}3&1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}-13\\-3\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\1&1\end{matrix}\right))\left(\begin{matrix}-13\\-3\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-1}&-\frac{1}{3-1}\\-\frac{1}{3-1}&\frac{3}{3-1}\end{matrix}\right)\left(\begin{matrix}-13\\-3\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{1}{2}&\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}-13\\-3\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-13\right)-\frac{1}{2}\left(-3\right)\\-\frac{1}{2}\left(-13\right)+\frac{3}{2}\left(-3\right)\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
Lakukan aritmetik.
x=-5,y=2
Ekstrak unsur matriks x dan y.
3x+y=-13,x+y=-3
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
3x-x+y-y=-13+3
Tolak x+y=-3 daripada 3x+y=-13 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
3x-x=-13+3
Tambahkan y pada -y. Seubtan y dan -y saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
2x=-13+3
Tambahkan 3x pada -x.
2x=-10
Tambahkan -13 pada 3.
x=-5
Bahagikan kedua-dua belah dengan 2.
-5+y=-3
Gantikan -5 dengan x dalam x+y=-3. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk y.
y=2
Tambahkan 5 pada kedua-dua belah persamaan.
x=-5,y=2
Sistem kini diselesaikan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}