Selesaikan untuk x, y
x=5
y=0
Graf
Kongsi
Disalin ke papan klip
2x+3y=10
Pertimbangkan persamaan pertama. Tambahkan 10 pada kedua-dua belah. Apa-apa sahaja yang ditambahkan pada sifar menjadikannya nombor itu sendiri.
4x-3y=20
Pertimbangkan persamaan kedua. Tolak 3y daripada kedua-dua belah.
2x+3y=10,4x-3y=20
Untuk menyelesaikan sepasang persamaan menggunakan penggantian, mula-mula selesaikan satu daripada persamaan untuk salah satu daripada pemboleh ubah. Kemudian gantikan hasil untuk pemboleh ubah itu dalam persamaan lain.
2x+3y=10
Pilih salah satu daripada persamaan dan selesaikannya untuk x dengan mengasingkan x di sebelah kiri tanda sama dengan.
2x=-3y+10
Tolak 3y daripada kedua-dua belah persamaan.
x=\frac{1}{2}\left(-3y+10\right)
Bahagikan kedua-dua belah dengan 2.
x=-\frac{3}{2}y+5
Darabkan \frac{1}{2} kali -3y+10.
4\left(-\frac{3}{2}y+5\right)-3y=20
Gantikan -\frac{3y}{2}+5 dengan x dalam persamaan lain, 4x-3y=20.
-6y+20-3y=20
Darabkan 4 kali -\frac{3y}{2}+5.
-9y+20=20
Tambahkan -6y pada -3y.
-9y=0
Tolak 20 daripada kedua-dua belah persamaan.
y=0
Bahagikan kedua-dua belah dengan -9.
x=5
Gantikan 0 dengan y dalam x=-\frac{3}{2}y+5. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=5,y=0
Sistem kini diselesaikan.
2x+3y=10
Pertimbangkan persamaan pertama. Tambahkan 10 pada kedua-dua belah. Apa-apa sahaja yang ditambahkan pada sifar menjadikannya nombor itu sendiri.
4x-3y=20
Pertimbangkan persamaan kedua. Tolak 3y daripada kedua-dua belah.
2x+3y=10,4x-3y=20
Letakkan persamaan dalam bentuk piawai dan kemudian gunakan matriks untuk menyelesaikan sistem persamaan.
\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
Tuliskan persamaan dalam bentuk matriks.
inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
Darabkan ke kiri persamaan dengan matriks songsang bagi \left(\begin{matrix}2&3\\4&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
Matriks hasil darab dan sonsangnya adalah matriks identiti.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
Darabkan matriks di sebelah kiri tanda sama dengan.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-3\times 4}&-\frac{3}{2\left(-3\right)-3\times 4}\\-\frac{4}{2\left(-3\right)-3\times 4}&\frac{2}{2\left(-3\right)-3\times 4}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
Untuk matriks 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matriks songsang ialah \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), jadi persamaan matriks tersebut boleh ditulis semula sebagai masalah pendaraban matriks.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
Lakukan aritmetik.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 10+\frac{1}{6}\times 20\\\frac{2}{9}\times 10-\frac{1}{9}\times 20\end{matrix}\right)
Darabkan matriks tersebut.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
Lakukan aritmetik.
x=5,y=0
Ekstrak unsur matriks x dan y.
2x+3y=10
Pertimbangkan persamaan pertama. Tambahkan 10 pada kedua-dua belah. Apa-apa sahaja yang ditambahkan pada sifar menjadikannya nombor itu sendiri.
4x-3y=20
Pertimbangkan persamaan kedua. Tolak 3y daripada kedua-dua belah.
2x+3y=10,4x-3y=20
Untuk menyelesaikan dengan penghapusan, pekali bagi salah satu daripada pemboleh ubah mestilah sama dalam kedua-dua persamaan supaya pemboleh ubah tersebut akan saling membatalkan apabila satu persamaan ditolak daripada yang satu lagi.
4\times 2x+4\times 3y=4\times 10,2\times 4x+2\left(-3\right)y=2\times 20
Untuk menjadikan 2x dan 4x sama, darabkan semua sebutan pada setiap belah persamaan pertama dengan 4 dan semua sebutan pada setiap belah yang kedua dengan 2.
8x+12y=40,8x-6y=40
Permudahkan.
8x-8x+12y+6y=40-40
Tolak 8x-6y=40 daripada 8x+12y=40 dengan menolak sebutan serupa pada setiap belah tanda sama dengan.
12y+6y=40-40
Tambahkan 8x pada -8x. Seubtan 8x dan -8x saling membatalkan dan meninggalkan persamaan dengan hanya satu pemboleh ubah yang boleh diselesaikan.
18y=40-40
Tambahkan 12y pada 6y.
18y=0
Tambahkan 40 pada -40.
y=0
Bahagikan kedua-dua belah dengan 18.
4x=20
Gantikan 0 dengan y dalam 4x-3y=20. Disebabkan persamaan terhasil mengandungi hanya satu pemboleh ubah, anda boleh menyelesaikan terus untuk x.
x=5
Bahagikan kedua-dua belah dengan 4.
x=5,y=0
Sistem kini diselesaikan.
Contoh
Persamaan kuadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Persamaan linear
y = 3x + 4
Aritmetik
699 * 533
Matriks
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Persamaan serentak
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Pembezaan
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Pengamiran
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Had
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}