Langkau ke kandungan utama
Nilaikan
Tick mark Image
Kembangkan
Tick mark Image
Graf

Masalah Sama dari Carian Web

Kongsi

\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-x
Faktor x^{2}+2x-1.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-\frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Darabkan x kali \frac{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}.
\frac{x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Oleh kerana \frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} dan \frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} mempunyai penyebut yang sama, tolakkan dengan menolakkan pengangka.
\frac{x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Lakukan pendaraban dalam x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Gabungkan sebutan serupa dalam x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-\left(\sqrt{2}\right)^{2}+1}
Kembangkan \left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-2+1}
Punca kuasa untuk \sqrt{2} ialah 2.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-1}
Tambahkan -2 dan 1 untuk dapatkan -1.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-x
Faktor x^{2}+2x-1.
\frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}-\frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Untuk menambah atau menolak ungkapan, kembangkannya untuk membuat penyebut mereka sama. Darabkan x kali \frac{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}.
\frac{x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Oleh kerana \frac{x^{2}-2x-1}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} dan \frac{x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)} mempunyai penyebut yang sama, tolakkan dengan menolakkan pengangka.
\frac{x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Lakukan pendaraban dalam x^{2}-2x-1-x\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)}
Gabungkan sebutan serupa dalam x^{2}-2x-1-x^{3}-x^{2}\sqrt{2}-x^{2}-x^{2}+x^{2}\sqrt{2}+x.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-\left(\sqrt{2}\right)^{2}+1}
Kembangkan \left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right).
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-2+1}
Punca kuasa untuk \sqrt{2} ialah 2.
\frac{-x^{2}-x-1-x^{3}}{x^{2}+2x-1}
Tambahkan -2 dan 1 untuk dapatkan -1.